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Abstract. This article considers a regression model with coefficients
that are specified by bodies of evidence defined on the numerical axis.
Optimization problems of finding such evidential coefficients have been
set. The relationship between the evidential formulation of the problem
and some formulations of fuzzy regression problems is shown. The advan-
tages of evidential regression compared to possibilistic fuzzy regression
(better robustness, lower degree of fuzziness of coefficients) are demon-
strated using a numerical example.
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1 Introduction

Regression data analysis is one of the central machine learning techniques.
It involves finding a relationship between input and output observed variables
(sample data). There are many techniques for estimating the regression function.
First, there are methods of mathematical statistics (for example, the method
of least squares), based on the assumption that the input and output variables
are sample values of random variables. Secondly, these are machine learning
methods [6]: K-nearest neighbor smoother, SVM regression [5], regularization-
based methods (ridge regression [7], Lasso method [15]), splines, etc.

Classical regression methods assume that the data sources are reliable, and
the data itself is accurate. However, in a few problems this may be far from the
case. Therefore, the problem of regression analysis with imprecise and uncertain
(unreliable) data is relevant.

Data inaccuracy can be modeled by fuzzy sets. As a result, fuzzy regression
methods were developed. First of all, possibilistic [14] and metric [4] methods
are distinguished.

Uncertainty in data can be modeled using evidence theory [2,13], which has
many applications, including in forecasting problems (see, for example, [9–11]).
The EVREG (EVidential REGression) method [12] was one of the first methods
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2 A. Lepskiy

of regression analysis. This method is implemented based on the K-nearest neigh-
bor method and belongs to the group of local (nonparametric) regression analy-
sis methods. For each neighboring element, a simple body of evidence is formed,
associated with the corresponding output observable value (singleton) and with
a mass depending on the distance between the neighboring and the current ele-
ment. After which, all the simple bodies of evidence of the K neighbors are aggre-
gated using Dempster’s rule into one common body of evidence, which deter-
mines the predicted value. Recently [3] a new regression analysis model called
ENNreg (Evidential Neural Network regression) was proposed, which computes
a prediction in the form of a so-called Gaussian random fuzzy number.

In this paper, a new approach will be proposed that develops the possibilistic
model [14] for finding fuzzy linear regression coefficients. At the same time, this
model will reflect information about the degree of belief in the found imprecise
(interval or fuzzy) regression coefficients.

The remainder of the article is structured as follows. Section 2 provides the
necessary background from evidence theory and fuzzy sets. In Sect. 3, two evi-
dential regression models are introduced. The first is a model with consistent
unblurred evidential coefficients (Subsect. 3.1). The second is a model with fuzzy
focal elements (Subsect. 3.2). Section 4 presents a numerical example.

2 Necessary Background from the Theory of Evidence

Below we will consider bodies of evidence defined on some subset X ⊆ Rn.
Let 2X be the set of all subsets of X. A pair F = (A,m) is called a body of
evidence [13] on the X if the A is a finite set of subsets of X, which are called
focal elements; m : 2X → [0, 1] is a mass function satisfying the conditions:
m(A) > 0 ⇔ A ∈ A,

∑
A∈A m(A) = 1. Below we will consider both non-blurred

and fuzzy focal elements Ã, which are normal, i. e. hÃ = supx µÃ(x) = 1, where
µÃ is the membership function of the fuzzy set Ã.

A body of evidence FA = ({A}, 1) with one focal element is called categorical.
In particular, FX is a vacuous body of evidence. An arbitrary body of evidence
F = (A,m) can be represented as a convex sum of categorical bodies of evidence
F =

∑
A∈A m(A)FA. We will consider the simple bodies of evidence of the form

Fα
A = (1 − α)FA + αFX , α ∈ [0, 1]. The body of evidence F = (A,m) is called

consonant if A′ ⊆ A′′ or A′′ ⊆ A′ is true for any A′, A′′ ∈ A.
The belief function Bel(A) =

∑
B⊆A m(B) and the plausibility function

Pl(A) =
∑

A∩B &=∅ m(B) are assigned to the body of evidence F = (A,m).
These functions are the lower and upper estimates of the probability of an event.
The function Pl(x) =

∑
B:x∈B m(B) is called the contour function (for evidence

bodies with normal fuzzy focal elements Pl(x) =
∑

B̃ m(B̃)µB̃(x)). It is known
that the contour function coincides with the possibility distribution function for
consonant bodies of evidence. In this case, the contour function can be considered
as a membership function of a fuzzy set.

The degree of uncertainty of the body of evidence F = (A,m) is charac-
terized using the functional H [1]. Below we will use the functional H(A) =
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Regression with Evidential Coefficients 3

∑
A∈A m(A)λ(A), where λ is the Lebesgue measure (if A = Ã is a fuzzy set with

an integrable membership function µÃ, then λ(Ã) =
∫

X µÃ(t)λ(dt)).
Evidence theory provides great opportunities for aggregating bodies of evi-

dence. Below we will use only the conjunctive rule of combination, which forms
a new body of evidence F = (A,m) = ⊗l

k=1 Fk from k bodies of evidence
Fk = (Ak,mk), k = 1, . . . , l according to the rule:

m(A) =
∑

A1∩...∩Al=A,
Ak∈Ak,k=1,...,l

m1(A1) · . . . · ml(Al). (1)

For non-conflicting bodies of evidence (i. e. A1 ∩ . . . ∩ Al (= ∅ ∀Ak ∈ Ak, k =
1, . . . , l), which are the only ones considered in this article, this rule coincides
with Dempster’s rule [2]. There are various ways of generalizing Dempster’s rule
to the case of bodies of evidence with fuzzy focal elements. Below we will consider
the approach of Ishizuka [8] (it is assumed that all fuzzy sets are normal):

m(Ã) =
1
k

∑

Ã1∩...∩Ãl=Ã,
Ãk∈Ak,k=1,...,l

hÃ1∩...∩Ãl
m1(Ã1) · . . . · ml(Ãl), (2)

where k =
∑

Ãk∈Ak,k=1,...,l

hÃ1∩...∩Ãl
m1(Ã1) · . . . · ml(Ãl).

3 Statement of the Evidential Regression Problem

We consider the problem of approximating point data {(xi, yi)}N
i=1 by a function

f(x;A0, . . . , An), where Aj , j = 0, . . . , n are bodies of evidence. For simplicity,
we will further consider only the case of paired linear regression:

f(x;A0, A1) = A0 + A1x.

In general, we will assume that evidential coefficients are simple bodies of evi-
dence, each of which is determined by one focal element (an interval or a fuzzy
number) and the degree of confidence that the true value of the coefficient belongs
to this element.

3.1 Evidential Regression with Interval Coefficients

We will assume that evidential coefficients are simple bodies of evidence Aα
j =

(1 − α)F[aj ,bj ] + αFXj , where Xj ⊆ R, j = 0, 1. Note that this can be written as

Fα
D = (1 − α)FD + αFΠ, (3)

where Π, D are some rectangles in R2, D ⊆ Π defined by lines with the desired
parameters, possible parameters and sample data.

Without loss of generality, we can assume that all points are ordered by
the first coordinate in the sample {(xi, yi)}N

i=1: x1 ≤ . . . ≤ xN . Let Lw(x) =
L(w0,w1)(x) = w0 + w1x. The model will consist of the following steps.
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4 A. Lepskiy

1. To determine X0, X1 (or Π) from the sample {(xi, yi)}N
i=1, we find the regres-

sion line Lc(x), the parameters of which c = (c0, c0) (assuming that the errors
are distributed according to the normal law N(0,σ2)) are calculated using
the formulas:

c1 =
∑N

i=1 (xi − x̄)(yi − ȳ)
∑N

i=1 (xi − x̄)2
, c0 = ȳ − c1x̄, x̄ =

1
N

N∑

i=1

xi, ȳ =
1
N

N∑

i=1

yi.

Next, we find the projections of the points {(xi, yi)}N
i=1 onto the line Lc.

As a result, we obtain the points P ′(x′
i, y

′
i) ∈ Lc, i = 1, . . . , N . Let P ′ =

arg minP ′
i
x′

i, P̄ ′ = arg maxP ′
i
x′

i and L′, L̄′ be two lines passing through
points P ′, P̄ ′ and perpendicular to Lc. Similarly, two other parallel lines L′′,
L̄′′ are defined, parallel to each other and parallel to the line Lc. The lines
L′, L̄′, L′′, L̄′′ will limit the rectangle Π, containing all sample points, and
located “along” the regression line.

2. In the new coordinate system (x′, y′), connected with the line Lc (O′ =
Lc ∩ L′ is the origin of coordinates, the axis O′x′ coincides with the
line Lc), we find two lines of “tolerances” of the form L±

∆(x′) =
±∆0 ± ∆1x′ which, together with the rectangle Π′, limit the domain
D′

∆ =
{
(x′, y′) : L−

∆(x′) ≤ y′ ≤ L+
∆(x′) ∀x′ ∈ Π′

x′} and satisfy the condition
1
N |{i : (x′

i, y′
i) ∈ D′

∆}| ≥ 1 − α. Note that in the general case we have
D′

∆ (⊆ Π′.
We will assume with respect to the “tolerances” that ∆0 ≥ 0, ∆1 ∈ R are
true, but in any case we have L−

∆(x′) ≤ y′ ≤ L+
∆(x′) ∀x′ ∈ Π′

x′ .
We will consider the “tolerances” ∆ = (∆0,∆1) to be optimal, which
minimize the area of the domain D′

∆: ∆(opt) = arg min∆ S(D′
∆), D′ =

arg minD′
∆

S(D′
∆). If D′ (⊆ Π′, then we “expand” Π′ in a minimal way along

the axis O′y′ so that the inclusion is satisfied. Returning to the original coor-
dinate system, we obtain the desired rectangles Π, D and the corresponding
parameters of the evidential regression lines.

3. The problem of step 2 is solved for l values 0 < α1 < . . . < αl ≤ 1. As a result,
we obtain l simple bodies of evidence Fαk

Dk
, k = 1, . . . , l of the form (3), where

Π =
⋃l

k=1 Πk.
4. Simple bodies of evidence Fαk

Dk
, k = 1, . . . , l are aggregated using the conjunc-

tive rule F = ⊗l
k=1 Fαk

Dk
according to formula (1). As a result, we will obtain

the final body of evidence, which will determine the evidential regression
coefficients.

3.2 Conjunctive Aggregation of Jointly Consonant Bodies
of Evidence

The simple bodies of evidence Fαk
Dk

, k = 1, . . . , l obtained in Subsect. 3.1 may
turn out to be jointly consonant, i. e. there exists a permutation of indices such
that Di1 ⊆ . . . ⊆ Dil ⊆ Π. In this case, the aggregation of such bodies of evidence
is significantly simplified.
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Regression with Evidential Coefficients 5

Proposition 1. The body of evidence F = (A,m) = ⊗l
k=1 Fαk

Dk
obtained as

a result of conjunctive aggregation (1) of jointly consonant simple bodies of evi-
dence Fαk

Dk
, k = 1, . . . , l will be consonant, A = {D1, . . . , Dl,Π}. Moreover, if

Di1 ⊆ . . . ⊆ Dil ⊆ Π, then (assuming αi0 = 1) we have

m (Dik) = (1 − αik) αi0αi1 . . . αik−1 , k = 1, . . . , l, m (Π) = αi1 . . . αil .

Corollary 1. If Fαk
Dk

, k = 1, . . . , l are jointly consonant simple bodies of evi-
dence and Pl is the plausibility function of their conjunctive aggregation (1)
⊗l

k=1 Fαk
Dk

, then for ordering ∅ = Di0 ⊆ Di1 ⊆ . . . ⊆ Dil ⊆ Dil+1 = Π we have:

Pl(x) = αi0 . . . αik−1 if x ∈ Dik\Dik−1 , k = 1, . . . , l + 1, αi0 = 1.

3.3 Evidential Regression with Fuzzy Coefficients

Let us consider the case when the regression coefficients can be fuzzy numbers.
For example, these could be triangular fuzzy numbers ãj = (cj −∆j , cj , cj +∆j),
∆j ≥ 0, j = 0, 1. Then the information that the regression coefficients are such
fuzzy numbers with belief level 1 − α can be represented by a simple body of
evidence

Aα
j = (1 − α)F(cj−∆j ,cj ,cj+∆j) + αFXj , j = 0, 1,

where Xj ⊆ R, j = 0, 1 are universal sets on which triangular symmetric fuzzy
numbers are considered; Xj must be consistent with the data sample {(xi, yi)}N

i=1
(for example, they can be defined as in Subsect. 3.1).

Let us set the problem of finding triangular fuzzy numbers (parameters cj ,
∆j ≥ 0, j = 0, 1) for which the uncertainty functional Φ(H(A0),H(A1)) (Φ is
the convolution of two uncertainties) of the bodies of evidence would be minimal
and (by analogy with Tanaka’s approach [14]) at least (1 − α)N sample points
would fall into a given h-cut of the model solution (ã0)h + (ã1)hx. It is easy
to show that the last requirement is equivalent to the condition

|{i : |c0 + c1xi − yi| ≤ (1 − h) (∆0 + ∆1 |xi|)}| ≥ (1 − α)N. (4)

If we use the value H(A) =
∑

ã∈A m(ã) |ã|, as a measure of the uncertainty of
the body of evidence A =

∑
ã∈A m(ã)Fã, then

H(Aα
j ) = (1 − α)∆j + α |Xj | , j = 0, 1.

Since for fixed X0, X1 and α the minimization of Φ(H(Aα
0 ),H(Aα

1 ))
is reduced to the minimization of the functional Φ̃(∆0,∆1), which depends
only on ∆0, ∆1, then for a stable solution we add to the minimized func-
tion the mean squared error (MSE) between the model values c0 + c1xi

with coefficients from the kernels of fuzzy numbers and the sample values yi:∑
i∈I (c0 + c1xi − yi)

2, where I is the set of indices satisfying the condition
I = {i : |c0 + c1xi − yi| ≤ (1 − h) (∆0 + ∆1 |xi|)}.
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6 A. Lepskiy

Then the function to be minimized takes the form
∑

i∈I

(c0 + c1xi − yi)
2 + θΦ̃(∆0,∆1) under condition (4),

where θ > 0. If we solve this problem for l values 0 < α1 < . . . < αl ≤ 1, we
obtain l pairs of simple bodies of evidence Aαk

0 , Aαk
1 , k = 1, . . . , l with fuzzy

focal elements, which can then be aggregated using the conjunctive rule (2). As
a result, we obtain evidential coefficients Aj = ⊗l

k=1 Aαk
j , j = 0, 1.

4 Numerical Example

Let us present the results of evidential regression on synthetic (heteroscedastic)
data {(xi, yi)}30

i=1: xi ∼ N( 1
3 i + 1, 0.0009), i = 1, . . . , 30; yi ∼ N(1 + 2xi, 16),

i = 1, . . . , 10 and yi ∼ N(1 + 2xi, 4), i = 11, . . . , 30.

Evidential Regression with Interval Coefficients. For three values α1 =
0.1, α2 = 0.3, α3 = 0.5, we find the optimal domains (see Subsect. 3.1) Π =
D0 ⊇ D1 ⊇ D2 ⊇ D3 (see Fig. 1(a)), the boundaries of which correspond to
the boundary values of the intervals of the regression coefficients. Note that the
intersection of the domain Di with the previous domain Di−1 without changing
the set of points belonging to each of the regions was considered instead of
the region Di itself in some cases. As a result, we obtain jointly consonant bodies
of evidence, from which a contour function can be constructed (see corollary 1):

Pl(x, y) =






1, (x, y) ∈ D3,
0.5, (x, y) ∈ D2\D3,
0.15, (x, y) ∈ D1\D2,
0.015, (x, y) ∈ Π\D1.

Fig. 1. (a) Optimal domains for evidential regression; (b) Evidential regression with
fuzzy coefficients.
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Regression with Evidential Coefficients 7

This function can be viewed as a membership function of a fuzzy set that deter-
mines the regression coefficients.

Evidential Regression with Fuzzy Coefficients. The results of evidential
regression with fuzzy coefficients (see Subsect. 3.2; only the support boundaries
are visualized) for values α1 = 0.1, α2 = 0.3, α3 = 0.5 and h = 0.7, Φ(t, s) =
0.6t + 0.4s are shown in Fig. 1(b). The coefficients are triangular fuzzy numbers
ã0 and ã1, the parameters of which for three values α are given in Table 1.

Table 1. Fuzzy evidential regression coefficients.

ã0 ã1

α1 = 0.1 (−0.89, 1.02, 2.94) (−1.02, 1.85, 4.72)

α2 = 0.3 (0.62, 1.45, 2.28) (0.56, 1.81, 3.06)

α3 = 0.5 (1.38, 1.88, 2.37) (1.02, 1.76, 2.51)

We will perform aggregation Aj = ⊗3
k=1 Aαk

j , j = 0, 1 of simple bodies
of evidence-coefficients using Dempster’s rule (2) for fuzzy focal elements. As
a result, we will obtain the final evidential coefficients. The graph of the contour
function Pl1 of the evidential coefficient A1 is shown in Fig. 2. Note that the focal
fuzzy elements are not strictly consonant (though they are close to being so).
So, we have maxt Pl1(t) ≈ 0.991 < 1. At the same time, the degrees of fuzziness
and ambiguity in this case will be significantly lower than in the case of fuzzy
regression, which would result in triangular fuzzy coefficients. The appearance
of the contour function can be used to judge the presence of outliers and/or
heteroscedasticity of the data.

Fig. 2. Contour function of evidential coefficient A1.

5 Conclusion

The article considers two models of evidential regression. The first model is
a model with interval focal elements, and the second is a model with fuzzy
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8 A. Lepskiy

focal elements. New models allow us to obtain more complete information about
the desired coefficients with a lower degree of blurring compared to fuzzy regres-
sion models. In addition, these models will be more robust compared to possibil-
ity models of fuzzy regression, since the method does not require that all sample
elements (including outliers) belong to a given cutting set.

Generalization of the proposed methodology to the case of multiple regres-
sion (including the development of computational procedures) is an important
problem for further research.
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