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Abstract. The problem of threshold ranking of alternatives represented
by vector fuzzy estimates of a three-gradation scale (high, medium, low)
is considered in the article. A generalization of the corresponding proce-
dure for fuzzy estimates is proposed, based on the calculation of the fuzzy
cardinalities of a set of fuzzy estimates for each gradation. We discuss
the general properties that the fuzzy cardinality of a set of fuzzy esti-
mates must satisfy. The proposed method is illustrated by the example
of ranking articles based on their assessments by reviewers and consid-
ering information about the degree of confidence of reviewers in their
assessments. This information from reviewers is converted into vectors
of three-grade fuzzy ratings for each article. These alternatives are then
ranked according to the developed methodology. The differences between
the results of such ranking and the ranking of unblurred estimates and/or
after applying alternative methods are discussed.

Keywords: Threshold rule · Fuzzy cardinality of fuzzy estimates · Rank-
ing of vector fuzzy alternatives.

1 Introduction

Some applied problems of ranking vector scores of alternatives assume that low
scores for one criterion cannot be compensated by high scores for other criteria.
The corresponding rules for aggregating preferences for the purpose of ranking
alternatives are called non-compensatory. The threshold rule for ranking vector
alternatives in m-gradation scales is one of the popular rules of this type [1,2].
It is known [2] that the application of this rule comes down to the lexicographic
ordering of the cardinality vectors of estimates of different gradations.

If the decision maker does not have absolute confidence in the belonging
of a particular assessment of an alternative to a certain gradation, then such
a situation can be modeled using some uncertainty tools. This can be modeled
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using fuzzy set theory. Thus, the problem of developing a method for threshold
ranking of vector fuzzy estimates of alternatives may be relevant.

A method for solving this problem based on calculating a certain measure of
proximity between all fuzzy estimates of a certain gradation and the reference
number (fuzzy or unblurred) for a given gradation was proposed in a recent
work [5]. This approach can be called metric.

In this paper, another approach will be proposed, which is based on calcu-
lating the fuzzy cardinality of a set of fuzzy estimates of each gradation.

This approach will be illustrated by the example of ranking articles/reports
based on the results of their evaluation by reviewers and considering the degree
of confidence of the reviewers in their decision.

The rest of the article is structured as follows. The non-fuzzy threshold ag-
gregation problem is formulated in Section 2. The procedure for calculating the
fuzzy cardinality of three-grade fuzzy estimates is described in Section 3. Proce-
dures for comparing cardinality vectors of fuzzy estimates of different gradations
and ranking alternatives are discussed in Section 4. A numerical example of rank-
ing alternatives based on the developed methodology is discussed in Section 5.
Some preliminary conclusions are given in Section 6.

2 Threshold Aggregation Problem. Unblurred Case

Let us assume that the alternatives are represented by n-dimensional vectors
x = (x1, . . . , xn) on a three-gradation scale, i. e. xi ∈ {1, 2, 3}. Let X be a set
of alternatives of this type that need to be ranked. The ranking procedure is
carried out using an aggregation operator φn = φ : X → R, which must satisfy
the following axioms [2]:

1. Pareto-domination: if x,y ∈ X and xi ≥ yi ∀i, ∃s : xs > ys, then φ(x) >
φ(y);

2. pairwise compensability of criteria: if x,y ∈ X and vk(x) = vk(y) k = 1, 2,
then φ(x) = φ(y), where vk(x) = |{i : xi = k}| is the number of estimates
of the gradation k (cardinality of the set of k gradation) in the alternative
x, k = 1, 2, 3;

3. threshold noncompensability: φ(2, . . . , 2︸ ︷︷ ︸
n

) > φ(x) ∀x ∈ X: ∃s : xs = 1;

4. the reduction axiom: if ∀x,y ∈ X ∃s : xs = ys, then φn(x) > φn(y) ⇔
φn−1(x−s) > φn−1(y−s), where x−s = (x1, . . . , xs−1, xs+1, . . . , xn).

It has been shown [2] that aggregation φ comes down to the application of
a lexicographic rule: φ(x) > φ(y) ⇔ v1(x) < v1(y) or ∃j ∈ {1, 2} : vk(x) = vk(y)
∀k ≤ j and vk+1(x) < vk+1(y). A generalization of this problem to the case of
m-gradation scales (m ≥ 3) was considered in [1].
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3 The procedure for Finding the Fuzzy Cardinality
of a Set of Three-Grade Fuzzy Estimates

Let the alternatives be represented by n-dimensional vectors x̃ = (x̃1, . . . , x̃n) of
fuzzy sets. Each fuzzy set x̃i is defined on a three-gradation base set {L,M,H}
and has a membership function µx̃i

. We will represent a fuzzy set x̃i as a vector
of values of its membership function: x̃i = (µx̃i

(L), µx̃i
(M), µx̃i

(H)). According
to the meaning of the problem, we can (and will) assume that either the vector
x̃i is strictly monotonic, or µx̃i

(M) > max {µx̃i
(L), µx̃i

(H)}.
We will say that the fuzzy set x̃i belongs to one of the classes: class L (low

grades), class M (medium grades) or class H (high grades): x̃i ∈ S ⇔ µx̃i
(S) =

max
Q∈{L,M,H}

µx̃i
(Q), S ∈ {L,M,H}. Let Sx̃ = {x̃i : x̃i ∈ S}, S ∈ {L,M,H}.

We will introduce the concept of fuzzy cardinality ṽS(x̃) of estimates for
each vector x̃ = (x̃1, . . . , x̃n) of fuzzy estimates and each class S ∈ {L,M,H}.
Fuzzy cardinality will be defined on the base set {0, . . . , n} (n is the number
of criteria, assessments, etc., the dimension of the vector of alternatives). The
fuzzy cardinality membership function µṽS(x̃) of the class S ∈ {L,M,H} must
satisfy the following conditions.

1) µṽS(x̃)(k) = 1 ⇔ k =
⌊∑

x̃∈Sx̃
µx̃(S)

⌋
, where ⌊ ⌋ is rounding down. The

value
⌊∑

x̃∈Sx̃
µx̃(S)

⌋
is the lower estimate of the cardinality of the largest values

of the membership function of all class estimates (gradation) S.

2) µṽS(x̃) (k) = 0, if k <
⌊∑

x̃∈Sx̃
µx̃(S)

⌋
.

Condition 2) means that the cardinality of the set of estimates for a class S
cannot be less than the number of estimates that obviously belong to this class.

Desirable properties of fuzzy cardinality would also be the following. Let
Fuz (x̃) = (Fuz (x̃1) , . . . , Fuz (x̃n)), where Fuz is a certain degree of fuzziness
of the set. For a = (a1, . . . , an) and b = (b1, . . . , bn) vectors, comparison a ≥ b
means that a1 ≥ b1, . . . , an ≥ bn.

3) if Fuz (x̃) ≥ Fuz (ỹ), then Fuz (ṽS(x̃)) ≥ Fuz (ṽS(ỹ)) ∀S ∈ {L,M,H}.
4) if Fuz (x̃) = 0, then ṽS(x̃) = vS(x) ∀S ∈ {L,M,H}.
Due to the specified restrictions on fuzzy estimates x̃i, the last condition

means that if all fuzzy estimates are non-fuzzy (i. e. µx̃i
(S) ∈ {0, 1} ∀S ∈

{L,M,H}), then the fuzzy cardinality of the vector estimate will coincide with
the usual cardinality. In this case, the fuzzy cardinality membership function

will be binary: µṽS(x̃)(k) =

{
1, k = |Sx̃| ,
0, k ̸= |Sx̃| ,

k = 0, . . . , n. We will find the re-

maining values µṽS(x̃) (k) for k >
⌊∑

x̃∈Sx̃
µx̃(S)

⌋
using the following threshold

rule.
Let S1, S2, S3 ∈ {L,M,H} be three different classes of estimates such that

µx̃i
(S1) > µx̃i

(S2) ≥ µx̃i
(S3). Then we will call the estimate x̃i the first level

estimate for the class S1. If µx̃i
(S2) > µx̃i

(S3) is true, then the assessment x̃i

will be called the assessment of the second level for the class S2 and the third
level for the class S3. If µx̃i

(S2) = µx̃i
(S3) is true, then we call the estimate x̃i
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an estimate of the second level for both the class S2 and the class S3. We will
order all values µx̃i

(S) = qi, i = 1, . . . , n in ascending order of level numbers for

a fixed class S: q
(1)
i1

, . . . , q
(1)
ik

, q
(2)
ik+1, . . . , q

(2)
ir

, q
(3)
ir+1, . . . , q

(3)
in

(the superscript is the
level number).

Then we get for the first level values, according to condition 1): µṽS(x̃) (p1) =

1, where p1 :=
⌊
q
(1)
i1

+ . . .+ q
(1)
ik

⌋
. If there are no first-level estimates, then we

assume p1 = 0.

Next, we will consider the values of the 2nd level. If there are quite a lot of
them and they have large values, then this means that the values of the fuzzy
cardinality membership function will be quite large for cardinalities greater than
p1. For example, the following threshold procedure may be proposed.

If p2 =
⌊{

q
(1)
i1

+ . . .+ q
(1)
ik

}
+ q

(2)
ik+1 + . . .+ q

(2)
ir

⌋
≥ 1, then µṽS(x̃) (p1 + 1) =

. . . = µṽS(x̃) (p1 + p2) = m2, where m2 ∈ (0, 1). Here { } is the fractional part of
the number. Note that p1 + p2 < n.

The values of the 3rd level are taken into account in the same way. If p3 =⌊{{
q
(1)
i1

+ . . .+ q
(1)
ik

}
+ q

(2)
ik+1 + . . .+ q

(2)
ir

}
+ q

(3)
ir+1 + . . .+ q

(3)
in

⌋
≥ 1, then we will

increase by m3 the membership function µṽS(x̃) for the values of the argument
p1 + 1, . . . , p1 + p3, where 0 < m3 < min{m2, 1−m2}. Note that p1 + p3 < n.

Example 1. Let the vector x̃ = (x̃1, . . . , x̃5) from 5 fuzzy estimates be given,
where x̃i = (µx̃i

(L), µx̃i
(M), µx̃i

(H)), i = 1, . . . , 5 and x̃1 = (0.5, 0.6, 1), x̃2 =
(0.3, 0.5, 1), x̃3 = (0.5, 1, 0.4), x̃4 = (1, 0.8, 0.3), x̃5 = (1, 0.5, 0.2). Then we
will get the following results of calculating the values of the fuzzy cardinality
membership function for each class (which we will also write in the form of
vectors) ṽS(x̃) =

(
µṽS(x̃)(0), . . . , µṽS(x̃)(5)

)
, S ∈ {L,M,H}:

a) the vector of low grades ordered by level is equal to
(
1(1); 1(1); 0.5(2);

0.5(3); 0.3(3)
)
. Therefore, we have p1 = 1(1) + 1(1) = 2, p2 =

⌊
0.5(2)

⌋
= 0,

p3 =
⌊{

0.5(2)
}
+ 0.5(3) + 0.3(3)

⌋
= 1. Hence, ṽL(x̃) = (0, 0, 1,m3, 0, 0).

b) the vector of level-ordered values for medium scores is equal to
(
1(1); 0.8(2);

0.6(2); 0.5(2); 0.5(2)
)
. Therefore, we have p1 = 1(1) = 1, p2 =

⌊
0.8(2) + 0.6(2)+

+0.5(2) + 0.5(2)
⌋
= 2, p3 = 0 and ṽM (x̃) = (0, 1,m2,m2, 0, 0).

c) the vector of level-ordered values for high scores is equal to
(
1(1); 1(1);

0.4(3); 0.3(3); 0.2(3)
)
. Therefore, we have p1 = 1(1) + 1(1) = 2, p2 = 0, p3 =⌊

0.4(3) + 0.3(3) + 0.2(3)
⌋
= 0 and ṽH(x̃) = (0, 0, 1, 0, 0, 0).

Herem2,m3 are some threshold values that satisfy the conditionsm2 ∈ (0, 1),
0 < m3 < min{m2, 1−m2}.
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4 Comparison of Fuzzy Cardinality and Ranking of
Alternatives

Let Vn be the set of all fuzzy cardinalities for n fuzzy estimates.
To apply the lexicographic rule for ranking a set of vector fuzzy alternatives

{x̃} with respect to fuzzy cardinality ṽ(x̃) = (ṽL(x̃), ṽM (x̃), ṽH(x̃)), it is nec-
essary to use some rule for ordering fuzzy sets. This can be done using some
defuzzification function F : Vn → R.

We will assume that the fuzzy cardinalities of class S ∈ {L,M,H} estimates
are in the relation ṽS (x̃) ≺ ṽS (ỹ) for two alternatives x̃ and ỹ if F (ṽS (x̃)) <
F (ṽS (ỹ)) and are equal ṽS (x̃) ∼ ṽS (ỹ) if F (ṽS (x̃)) = F (ṽS (ỹ)).

For example, if we use center of gravity

G (ṽS(x̃)) =
n∑

i=0

iµṽS(x̃)(i)

/
n∑

i=0

µṽS(x̃)(i)

as the defuzzification function, we get for the example above:

G (ṽL(x̃)) =
2 + 3m3

1 +m3
, G (ṽM (x̃)) =

1 + 5m2

1 + 2m2
, G (ṽH(x̃)) = 2.

For any acceptable threshold values m2 and m3, we have G (ṽM (x̃)) <
G (ṽH(x̃)) < G (ṽL(x̃)). Therefore, the ranking ṽM (x̃) ≺ ṽH(x̃) ≺ ṽL(x̃) is cor-
rect.

Another way to compare the cardinality of sets of fuzzy estimates is to use
the same lexicographic rule. Let ṽS (x̃) = (a0, . . . , an), ṽS (ỹ) = (b0, . . . , bn).
Then we will assume that ṽS (x̃) ≺ ṽS (ỹ) if a0 < b0 or ∃k ∈ {0, . . . , n − 1} :
a0 = b0, . . . , ak = bk, ak+1 < bk+1. Otherwise, we assume that ṽS (x̃) ∼ ṽS (ỹ).

Now, the threshold aggregation rule for two alternatives x̃ and ỹ will be as
follows:

φ (x̃) > φ (ỹ) ⇔ ṽL (x̃) ≺ ṽL (ỹ) or ṽL (x̃) ∼ ṽL (ỹ) , ṽM (x̃) ≺ ṽM (ỹ)

or ṽL (x̃) ∼ ṽL (ỹ) , ṽM (x̃) ∼ ṽM (ỹ) , ṽH (x̃) ≺ ṽH (ỹ) .

5 Numerical Example

Let us illustrate the proposed fuzzy threshold aggregation procedure using the
example of ranking reviews of articles/conference reports in the EasyChair con-
ference management system (https://easychair.org). The septenary grading
system zi ∈ {−3,−2,−1, 0, 1, 2, 3} is used in the EasyChair system. The system
ranks correspond to the recommendations ”strong reject”, ”reject”, ”weak re-
ject”, ”borderline paper”, ”weak accept”, ”accept”, ”strong accept”. In addition,
the reviewer gives a rating on a five-star scale (0.2 – ”none”, 0.4 – ”low”, 0.6 –
”medium”, 0.8 – ”high”, 1 – ”expert”) about the degree of confidence in the cor-
rectness of his decision: λi ∈ {0.2, 0.4, 0.6, 0.8, 1}. This example was considered
in [5] to study the metric approach in the fuzzy threshold aggregation problem.

https://easychair.org
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In addition, this example was also considered in [6] to illustrate the evidential
aggregation and ranking of expert ordinal data.

Point data
{
(z

(k)
i , λ

(k)
i )

}5

i=1
of n = 5 reviewers regarding 4 articles are pre-

sented in Table 1 (i is the reviewer’s index, k is the article’s index, k = 1, . . . , 4).

Table 1. Initial data on reviewers’ assessments

paper 1 paper 2 paper 3 paper 4

reviewer 1 (2, 0.8) (2, 1) (1, 0.8) (0, 0.6)

reviewer 2 (1, 1) (2, 0.8) (2, 0.6) (1, 0.4)

reviewer 3 (0, 0.8) (0, 0.6) (−1, 0.6) (1, 1)

reviewer 4 (3, 0.4) (−1, 0.4) (0, 0.6) (2, 0.2)

reviewer 5 (2, 0.6) (1, 0.6) (1, 1) (2, 1)

Let’s transform each pair (z, λ) into a three-grade fuzzy estimate x̃ = x̃(z, λ) =
(µx̃(L), µx̃(M), µx̃(H)) using some rule for blurring point estimates. Various blur
rules are widely used in theory and applications. For example, the optimization
procedure for converting point expert estimates into interval ones was considered
in [4]. The procedure for converting interval expert data into fuzzy data, taking
into account additional information about the decision maker, was considered
in [3]. The transformation of point data of an ordinal scale into some sets of
ranks was considered in [6].

We will use the following blur rule below: if z ∈ H = {1, 2, 3} (high es-

timates), then x̃ =
(

λ
2z+λ ,

λ
z+λ , λ

)
; if z ∈ L = {−3,−2,−1} (low estimates),

then x̃ =
(
λ, λ

|z|+λ ,
λ

2|z|+λ

)
; if z ∈ M = {0} (medium estimate), then x̃ =(

λ
1+2λ , λ,

λ
1+2λ

)
.

Remark 1. In general, we will require the transformation x̃(z, λ) to satisfy the
following conditions:

1. µx̃(z,λ)(S) ≤ λ ∀S ∈ {L,M,H}, ∀(z, λ) and µx̃(z,λ)(S) = λ ⇔ z ∈ S.
2. values µx̃(z,λ)(L), µx̃(z,λ)(M), µx̃(z,λ)(H) must satisfy the above monotonic-

ity conditions for different z;
3. if λ′ ≥ λ′′, then Fuz (x̃(z, λ′)) ≤ Fuz (x̃(z, λ′′));

if |z′| ≥ |z′′|, then Fuz (x̃(z′, λ)) ≤ Fuz (x̃(z′′, λ)).

The transformations used satisfy these requirements.

The fuzzy estimates obtained in this way are presented in Table 2.
Using the method described above, we will find the fuzzy cardinality of all

reviewer ratings for all classes and for all articles.
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Table 2. Fuzzy assessments of reviewers, their fuzzy cardinality, centers of gravity of
fuzzy cardinality and cardinality of non-fuzzy assessments

paper 1 paper 2 paper 3 paper 4

rev. 1
(
1
6
, 2
7
, 4
5

) (
1
5
, 1
3
, 1
) (

2
7
, 4
9
, 4
5

) (
3
11
, 3
5
, 3
11

)
rev. 2

(
1
3
, 1
2
, 1
) (

1
6
, 2
7
, 4
5

) (
3
23
, 3
13
, 3
5

) (
1
6
, 2
7
, 2
5

)
rev. 3

(
4
13
, 4
5
, 4
13

) (
3
11
, 3
5
, 3
11

) (
3
5
, 3
8
, 3
13

) (
1
3
, 1
2
, 1
)

rev. 4
(

1
16
, 2
17
, 2
5

) (
2
5
, 2
7
, 1
6

) (
3
11
, 3
5
, 3
11

) (
1
21
, 1
11
, 1
5

)
rev. 5

(
3
23
, 3
13
, 3
5

) (
3
13
, 3
8
, 3
5

) (
1
3
, 1
2
, 1
) (

1
5
, 1
3
, 1
)

ṽL
(k) (1,m3, 0, 0, 0, 0) (1,m3, 0, 0, 0, 0) (1,m3, 0, 0, 0, 0) (1,m3, 0, 0, 0, 0)

ṽM
(k) (1,m2, 0, 0, 0, 0) (1,m3, 0, 0, 0, 0) (1,m2,m2, 0, 0, 0) (1,m2, 0, 0, 0, 0)

ṽH
(k) (0, 0, 1,m2, 0, 0) (0, 0, 1, 0, 0, 0) (0, 0, 1, 0, 0, 0) (0, 0, 1, 0, 0, 0)

G(k)
(

m3
1+m3

, m2
1+m2

, 2+3m2
1+m2

) (
m3

1+m3
, m3
1+m3

, 2
) (

m3
1+m3

, 3m2
1+2m2

, 2
) (

m3
1+m3

, m2
1+m2

, 2
)

v(k) (0, 1, 4) (1, 1, 3) (1, 1, 3) (0, 1, 4)

The corresponding results are shown in Table 2 in vectors ṽS
(k)

= ṽS
(
x̃(k)

)
,

k = 1, . . . , 4, S ∈ {L, M, H}. Let’s find the vectors of the centers of gravity of

the fuzzy cardinalities G(k) =
(
G
(
ṽL

(k)
)
, G

(
ṽM

(k)
)
, G

(
ṽH

(k)
))

of all articles

(see Table 2).

We will obtain the following ranking of alternatives (articles) after lexico-
graphic comparison of vectors G(k), k = 1, . . . , 4 taking into account restric-
tions on threshold values m2 ∈ (0, 1), 0 < m3 < min{m2, 1 − m2}: φ

(
x̃(2)

)
>

φ
(
x̃(4)

)
> φ

(
x̃(1)

)
> φ

(
x̃(3)

)
.

The same ranking will be obtained if the cardinalities of gradations are com-
pared lexicographically.

Note that if we take into account only the three-grade recommendations
of reviewers (L = {−3,−2,−1}, M = {0}, H = {1, 2, 3}) and do not take into
account the degree of confidence, we obtain the following vectors of cardinality of
assessments v(k) =

(
vL(x

(k)), vM (x(k)), vH(x(k))
)
for each k-article, k = 1, . . . , 4

(see the last line in Table 2 ). Then the ranking of these articles will be as
follows: φ(x(1)) = φ(x(4)) > φ(x(2)) = φ(x(3)). Approximately the same ranking
will be obtained using the metric approach described in [5]. The main difference
in the results of the new and non-fuzzy (as well as metric) approaches is the
rearrangement of alternatives x(1) and x(2). The alternative x(1) will be better
than the x(2) under non-blurred threshold aggregation because the x(2) has one
low score, while the x(1) has no low scores.

But a low score in the alternative x(2) has a low degree of confidence. There-
fore, it has little effect on the cardinality of low estimates under fuzzy threshold
aggregation.
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6 Conclusion

A new approach to threshold aggregation and ranking of vector alternatives
specified by fuzzy evaluations of criteria on a three-graded base set is proposed
in this article. This approach is based on calculating and comparing the fuzzy
cardinality of sets of estimates for each gradation for all criteria and for each
alternative. The general properties that the fuzzy cardinality of a set of fuzzy
estimators must satisfy are discussed. The threshold procedure for constructing
the fuzzy cardinality of a set of fuzzy estimates is considered.

The proposed method is illustrated by the example of ranking articles based
on their assessments by reviewers and taking into account information about the
degree of confidence of reviewers in their assessments. This assessment format is
currently implemented in many conference management systems. For example,
in EasyChair. Data from reviewers on different articles in the form of pairs
”evaluation – degree of confidence” are converted into fuzzy three-gradation
sets, which are then ranked according to the developed methodology. It is shown
that the result of such ranking can differ significantly from non-blurred threshold
ranking.

A general scheme for ranking fuzzy vector alternatives based on calculating
the fuzzy cardinality of a set of estimates is proposed in the article. This scheme
can be refined and upgraded for a specific application. For example, the values of
measures of consistency of fuzzy estimates for each alternative can be taken into
account in the comparison. Changes in the values of the membership function in
the procedure for generating fuzzy cardinality can be different coordinatewise,
etc.

The development of axiomatics for fuzzy threshold aggregation is one of the
possible directions for future research.
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