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Abstract. The article introduces and discusses threshold belief and
plausibility functions. When forming such functions, only focal elements
that are ”significant” for a given set are taken into account. The sig-
nificance of focal elements is determined using a similarity measure and
a threshold. Threshold functionals of uncertainty, external and internal
conflicts, threshold rules of combination are introduced and considered
on the basis of threshold functions of the theory of evidence. A number
of examples are given to illustrate the use of threshold tools.
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1 Introduction

All focal elements that intersect with a given set are taken into account in
the theory of evidence when assessing the plausibility that the true alternative
belongs to the given set. However, some focal elements may have been formed
inaccurately. If a focal element overlaps ”weakly” (relative to some similarity
measure) with a given set, then the degree of confidence that this focal element
is important in assessing the plausibility of membership of a true alternative in a
given set will be small. Therefore, the problem of taking into account the degree
of intersection or inclusion of focal elements with a given set is relevant when
forming the main functions of the theory of evidence (belief, plausibility, etc.).

This problem is related to the analysis of the sensitivity of the main func-
tions of the theory of evidence to small changes in focal elements. Traditionally,
sensitivity to small changes in focal elements is analyzed using generalization-
specialization procedures [6]. But these procedures are performed on the body of
evidence itself and do not take into account the degree of intersection or inclusion
with a given set.

A similar problem of taking into account significant (i. e., having a large
degree of intersection or inclusion) focal elements is relevant when performing
operations of aggregating bodies of evidence, assessing conflict, degree of uncer-
tainty, etc.

⋆ The study was implemented in the framework of the Basic Research Program at the
National Research University Higher School of Economics (HSE University) in 2024.
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The procedure for calculating plausibility functions taking into account only
significant focal elements with respect to some similarity measure [2] will be dis-
cussed in this article. Similarly, focal elements that are ”significantly” contained
in a given set can be taken into account when forming a belief function. We
will call such functions threshold, since they take into account focal elements for
which the similarity measure exceeds a certain threshold. In general, threshold
functions may not satisfy some important properties of evidence theory. The
article discusses the conditions when these properties will be satisfied.

In addition, threshold functions give rise to the concepts of threshold func-
tionals of uncertainty, external and internal conflicts of bodies of evidence, as
well as threshold rules of combination. All these concepts are discussed in this
article.

Taking into account the significant focal elements allows for a controlled
reduction in the measure of uncertainty in the description of bodies of evidence
compared to non-threshold functions.

2 Necessary Information from the Theory of Evidence

Let us recall the necessary information from the theory of evidence [10]. Let
X = {x1, ..., xn} be a finite set; 2X be the set of all subsets on X; m: 2X → [0, 1],∑

A∈2X m(A) = 1, m(∅) = 0 is a mass function; A is a set of all focal elements,
i.e. A ∈ A if m(A) > 0; F = (A,m) is the body of evidence; F(X) be the set of
all bodies of evidence on the X. The body of evidence F = (A,m) is symbolically
convenient to represent in the form F =

∑
A∈A m(A)FA, where FA = ({A}, 1)

is a categorical body of evidence.
The body of evidence F = (A,m) uniquely defines the belief function

Bel(A) =
∑
B⊆A

m(B)

and its dual plausibility function

Pl(A) = 1−Bel(¬A) =
∑

B∩A ̸=∅

m(B). (1)

It’s always true that Bel(A) ≤ Pl(A) ∀A ⊆ X, and the length of the interval
[Bel(A), P l(A)] determines the degree of uncertainty of the event x ∈ A [1].

3 Threshold Functions of Belief and Plausibility

The summation of the mass functions in the formula (1) is carried out over
all focal elements that have a non-empty intersection with the given set. This
sum may include focal elements that have small (relative to some measure)
intersection compared to the measures of the intersecting sets themselves. Such
elements can be considered insignificant for assessing the plausibility of belonging
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to a given set. If we want to form a plausibility function in which only significant
elements are taken into account, then this can be done using the formula

Plh(A) =
∑

B:s(A,B)>h

m(B), (2)

where h ∈ [0, 1) and s(A,B) is a measure (index) of similarity [2], satisfy-
ing the conditions: 1) 0 ≤ s(A,B) ≤ 1; 2) s(A,B) = 0 ⇔ A ∩ B = ∅; 3)
s(A,A) = 1 ∀A ̸= ∅ (or weaker condition max

B
s(A,B) = s(A,A)). The simi-

larity measure must often (but not necessarily) satisfy the symmetry condition:
s(A,B) = s(B,A). Asymmetric similarity measures are called inclusion mea-

sures. Examples of similarity measures: a) Jaccard index J(A,B) =
|A ∩B|
|A ∪B|

;

b) s(A,B) =
|A ∩B|
|X|

; c) s(A,B) =

{
1, A ∩B ̸= ∅,
0, A ∩B = ∅; d) Simpson coefficient

s(A,B) =
|A ∩B|

min {|A| , |B|}
; e) Sörensen inclusion measure s(A,B) =

|A ∩B|
|B|

;

f) Sörensen coefficient s(A,B) =
2 |A ∩B|
|A|+ |B|

.

We will call a function of the form (2) the threshold plausibility function.
The parameter h ∈ [0, 1) regulates the degree of similarity between the focal
elements that are taken into account when calculating the plausibility and the
given set. The larger h, the higher this degree of closeness.

Transformations (1), (2) can be represented in matrix form
∑

B S(A,B)m(B) =
Sm, where S = (S(A,B))A,B∈2X , m – 2|X|-dimensional column vector, the coor-

dinates of which are the values of the mass function m(A), A ∈ 2X . For example,

Plh = Shm, where Sh = (Sh(A,B))A,B∈2X and Sh(A,B) =

{
1, if s(A,B) > h,
0, otherwise.

Such matrix transformations were considered, for example, in [5].

Remark 1. In general, the transformation matrix can be non-binary. Its ele-
ments may depend on the measure of similarity between the focal elements and
the set, the plausibility function of which is calculated. For example, S̃h(A,B) ={
s(A,B), if s(A,B) > h,
0, otherwise.

Note that the plausibility function P̃ l0 = S̃0m with

subscript e) coincides with the pignistic probability [11] P̃ l0(A) =
∑

B
|A∩B|
|B| m(B).

Properties of functions Plh:
1) Pl0 = Pl. This follows from condition 2) for the similarity measure;
2) Plh1

(A) ≤ Plh2
(A) ∀A ∈ 2X if h1 ≥ h2.

3) Plh(∅) = 0, but Plh(X) ≤ 1.
Property 3) means that the inequality Plh(X) < 1 will be true for some

similarity measures s and sufficiently large h ∈ [0, 1). But, for example, equality
Plh(X) = 1 ∀h ∈ [0, 1) is always true for the Simpson coefficient or index e).

4) if the similarity measure s(A,B) is monotone with respect to A (i.e. A′ ⊆
A′′ implies that s(A′, B) ≤ s(A′′, B) ), then the function Plh will be monotonic.
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The monotonicity condition for the similarity measure s(A,B) with respect
to the first argument is certainly satisfied by measures b), c), e).

Let us find the threshold belief function Belh as dual to Plh. We have

Belh(A) = 1− Plh(¬A) = 1−
∑

B:s(¬A,B)>h

m(B) =
∑

B:s(¬A,B)≤h

m(B). (3)

In other words, the threshold belief function is formulated taking into account
focal sets, which may contain a ”small” number of elements not included in the
considered set.

Remark 2. The classical concept of a belief function (including a threshold one)
assumes that the summation in (3) must be performed over sets B that inter-
sect A and satisfy the condition s(¬A,B) ≤ h in the threshold case. But the
statement s(¬A,B) ≤ h ⇒ A ∩ B ̸= ∅ is not true in the general case. It will be
true, for example, for similarity measures c), d), e). These similarity measures
are preferable to use in threshold belief functions.

Remark 3. Note that Belh(X) = 1 ∀h ∈ [0, 1) is true for Belh and any sim-
ilarity measure. But it may be Belh(∅) > 0 for some similarity measures and
some h ∈ [0, 1). This situation corresponds to the so-called open world concept,
which is considered within the framework, for example, of the Transferable Belief
Model [12] or the Generalized evidence theory [4]. At the same time, Bel0 = Bel.

The duality relationship and property 2) imply that:
2’) Belh1(A) ≥ Belh2(A) ∀A ∈ 2X if h1 ≥ h2;
4’) if the similarity measure s(A,B) is monotone with respect to A, then the

function Belh will be monotone.

Remark 4. If the threshold belief and plausibility functions are defined on a finite
setX, then they can be represented in matrix form. Let 0 = h1 < . . . < hl = 1 be
an ordered set of different values of the similarity measure s(A,B), A,B ∈ 2X .
It is clear that the values of Belh(A) and Plh(A) will not change within the

intervals h ∈ [hj , hj+1), j = 1, . . . , l − 1. Let {Ai}2
X−1

i=1 be the lexicographically
ordered set of all proper subsets of X. Then the function Belh can be represented
by the matrix Bel = (belij), where belij = Belhj

(Ai). The matrix Pl for Plh is
formed in a similar way. Note that the partition H = {hj}lj=0 and the size of the
matrices depend only on the similarity measure s and |X|, but do not depend
on evidence bodies.

In general, the agreement condition

Belh(A) ≤ Plh(A) ∀A ∈ A. (4)

may not be fulfilled.
Since for h = 0 the condition (4) is true, the function Plh does not increase,

and the function Belh does not decrease with respect to h, then there is a
value h0 = sup {h : Belh(A) ≤ Plh(A), A ∈ A} > 0 that the condition (4) is
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true on the interval [0, hmax) and false on the interval (hmax, 1). The equalities
Plh(X) = 1 and Belh(∅) = 0 ∀h ∈ [0, hmax] follow from (4) and the fact that
Belh(X) = 1, Plh(∅) = 0 ∀h ∈ [0, 1).

The following estimates for hmax follow from (2) and (3).

Proposition 1. If {B ∈ A : s(¬A,B) ≤ h} ⊆ {B ∈ A : s(A,B) > h} ∀A ∈ A,
then (4) is true.

Corollary 1. Inequality (4) is true if we have:

a) s(A,B) =
|A ∩B|
|B|

and h <
1

2
; b) s(A,B) =

|A ∩B|
|X|

and h <
minB∈A |B|

2 |X|
;

c) J(A,B) =
|A ∩B|
|A ∪B|

and h < min
B∈A

|B|
|X|+ |B|

; d) s(A,B) =
|A ∩B|

min {|A| , |B|}

and h <
1

2
; e) s(A,B) =

2 |A ∩B|
|A|+ |B|

and h < min
B∈A

2 |B|
|X|+ 2 |B|

.

Proposition 2. We have for measures a) or e) and for h ∈ (0, 1): Belh(X) = 1,

Belh({xi}) =
∑

B∈A:xi∈B,|B|≤ 1
1−h

m(B), P lh({xi}) =
∑

B∈A:xi∈B,|B|< 1
h

m(B).

In addition, we have

Plh(X) =
∑

B∈A:|B|>h|X|

m(B), Belh(∅) =
∑

B∈A:|B|≤h|X|

m(B)

for measure a) and Plh(X) = 1, Belh(∅) = 0 for measure e).

Example 1. Let F = 0.2F{a,b} + 0.3F{a,c} + 0.4F{b} + 0.1F{a,b,c} is the body of
evidence on X = {a, b, c}. Let us find the matrices Bel and Pl for the similarity
measure e). We have the partition H = {0, 1

3 ,
1
2 ,

2
3 , 1} for this measure. Then

Bel =

[0, 1
3 ) [

1
3 ,

1
2 ) [

1
2 ,

2
3 ) [

2
3 , 1)

{a} 0 0 0.5 0.6
{b} 0.4 0.4 0.6 0.7
{c} 0 0 0.3 0.4
{a, b} 0.6 0.7 1 1
{a, c} 0.3 0.4 0.6 0.6
{b, c} 0.4 0.5 1 1

,Pl =

[0, 1
3 ) [

1
3 ,

1
2 ) [

1
2 ,

2
3 ) [

2
3 , 1)

{a} 0.6 0.5 0 0
{b} 0.7 0.6 0.4 0.4
{c} 0.4 0.3 0 0
{a, b} 1 1 0.7 0.6
{a, c} 0.6 0.6 0.4 0.3
{b, c} 1 1 0.5 0.4

.

The first columns of these matrices correspond to the classical functions Bel
and Pl. Condition (4) is satisfied only for the first two columns, i.e. for h ∈ [0, 1

2 ).

4 Threshold Uncertainty and Internal Conflict

Functional Uh : F(X) → [0, 1]

Uh(F ) =
1

2n − 2

∑
A

(Plh(A)−Belh(A)), ; h ∈ [0, hmax)
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has the meaning of the uncertainty value [1] of the body of evidence F = (A,m)
for a given threshold value h ∈ [0, hmax). It is easy to see that the functional
Uh(F ) does not increase with respect to h ∈ [0, hmax).

The value Eh(F ) = U0(F )−Uh(F ) will characterize the total error in calcu-
lating the uncertainty at a given threshold value h ∈ [0, hmax).

Example 2. The functionals Uh(F ) and Eh(F ) for the body of evidence from
example 1 are equal, respectively

Uh(F ) =

{
13
30 , h ∈ [0, 1

3 ),

1
3 , h ∈ [ 13 ,

1
2 ).

Eh(F ) =

{
0, h ∈ [0, 1

3 ),

1
10 , h ∈ [ 13 ,

1
2 ).

The internal conflict of the body of evidence Con in : F(X) → [0, 1] charac-
terizes the degree of unconsolidation of focal elements [8]. There are different
ways to assess internal conflict. For example, the measure of internal conflict
proposed in [3]:

Con in(F ) = 1− max
1≤i≤n

Pl(xi).

But the internal conflict of the body of evidence will be zero with respect
to such a measure in any case of logical consistency of the set of focal ele-
ments:

⋂
A∈A A ̸= ∅. This ”strict” requirement for the degree of internal conflict

may not always be justified. For example, if the electoral college must choose
several candidates from the set {a, b, c, d, e} and half of the electors indicated
candidates {a, b, c}, and the other half indicated candidates {c, d, e}, then the
measure Con in(F ) = 0. However, such a body of evidence must be considered
internally conflicting.

If we use the threshold plausibility function Plh instead of the function Pl,
we obtain a threshold measure of internal conflict

Con inh(F ) = 1− max
1≤i≤n

Plh(xi).

Since the function Plh does not increase, the measure of internal conflict will
not decrease with increasing h ∈ [0, hmax). For example, the measure of inter-
nal conflict for the above example with electors and for the Jaccard similarity
measure would be equal to

Con inh(F ) = 1− max
1≤i≤n

∑
B∈A:xi∈B,|B|< 1

h

m(B) =

{
0, h ∈ [0, 1

3 ),

1, h ∈ [ 13 ,
1
2 ].

Example 3. The functional Con inh(F ) for the body of evidence from example 1

is equal to Con inh(F ) = 1− Plh({b}) =

{
0.3, h ∈ [0, 1

3 ),

0.4, h ∈ [ 13 ,
1
2 ).

Then the optimization problem of finding a threshold h ∈ [0, hmax) that
would minimize the functional

Φh(F ) = Uh(F ) + λCon inh(F ) → min
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can be formulated. The parameter λ > 0 adjusts the priority between uncertainty
and internal conflict.

Example 4. The functional Φh(F ) for the body of evidence from example 1 is
equal to

Φh(F ) =

{
13
30 + 0.3λ, h ∈ [0, 1

3 ),

1
3 + 0.4λ, h ∈ [ 13 ,

1
2 ),

argmin
h

Φh(F ) =

{
[0, 1

3 ), λ > 1,

[ 13 ,
1
2 ), λ ∈ (0, 1].

The pair (Con inh(F ), Uh(F )) characterizes the ”quality” of the body of evi-
dence. Less uncertainty and less internal conflict correspond to a higher ”quality”
body of evidence. We can pose the problem of finding a threshold h ∈ [0, hmax]
at which the uncertainty will be minimal, provided that the internal conflict does
not exceed a given value.

5 Threshold Aggregation and External Conflict

Suppose that two bodies of evidence F1 = (A1,m1) and F2 = (A2,m2) are given
on one and the same set X. Only strongly interacting focal elements can be
taken into account when aggregating these bodies of evidence into one body of
evidence F(X) × F(X) → F(X). Then the conjunctive threshold aggregation,
similar to Dempster’s rule, will take the form

mh(A) =
1

kh

∑
B∩C=A,s(B,C)>h

m1(B)m2(C), mh(∅) = 0, (5)

where kh =
∑

s(B,C)>h

m1(B)m2(C) ̸= 0. If kh = 0, then the rule (5) is not

applicable. Rule (5) is a special case of Zhang’s center combination rule [13].
Note that s(B,C) > 0 ⇒ A = B ∩ C ̸= ∅ in (5).

The value

Conh(F1, F2) = 1− kh =
∑

s(B,C)≤h

m1(B)m2(C) (6)

has the meaning of a threshold measure of external conflict between bodies of
evidence. Measures of conflict with weights were also considered in the [9]. It is
easy to see that for any similarity measure and any F1, F2 ∈ F(X) the following
is true:

1) Con0(F1, F2) =
∑

B∩C=∅ m1(B)m2(C) is the most popular measure of
external conflict from the Dempster rule (for a review of other measures of
external conflict see [7]);

2) Con1(F1, F2) = 1.

Example 5. Let three bodies of evidence be given onX = {a, b, c}: F1 = 0.2F{a,b}+
0.3F{a} + 0.4F{b} + 0.1F{a,b,c}, F2 = 0.6F{b,c} + 0.4F{a,b,c}, F3 = 0.4F{a} +
0.4F{b} + 0.2F{a,b,c}. Suppose we select two bodies of evidence from these three



8 A. Lepskiy

h (F1, F2) (F1, F3) (F2, F3)[
0, 1

3

)
0.18 0.28 0.24[

1
3
, 1
2

)
0.58 0.44 0.56[

1
2
, 2
3

)
0.82 0.72 0.8[

2
3
, 1
)

0.96 0.82 0.92

Table 1. The values of the conflict measure Conh.

with the least external conflict for subsequent aggregation. The values of the
conflict measure Conh for each pair, calculated using the formula (6) for the
Jaccard similarity measure, are presented in the Table 1.

If we use the usual (threshold-free, i.e. h = 0) measure of external conflict,
then the pair F1, F2 will have the least conflict. But if we want to take into
account (weakly) overlapping focal elements when assessing conflict, then we
can use the integral characteristic of conflict. For example,

IConw(F1, F2) =

1∫
0

w(h)Conh(F1, F2) dh,

where the non-negative weight function w(h) satisfies the normalization con-

dition
∫ 1

0
w(h) dh = 1 and regulates the priority of values h ∈ [0, 1). Small

values of h should have higher priority. Therefore, the function w(h) must be
non-increasing.

We will get for evidence bodies from example 5 and w(h) = 1: IConw(F1, F2) ≈
0.613, IConw(F1, F3) = 0.56, IConw(F2, F3) ≈ 0.613. In this case, choosing the
pair F1, F3 will be preferable. If we use the weight w(h) = 3

2 − h, we obtain
IConw(F1, F2) ≈ 0.523, IConw(F1, F3) ≈ 0.607, IConw(F2, F3) ≈ 0.534. In this
case, it would be preferable to choose the pair F1, F2 or F2, F3.

Integral conjunctive aggregation can be defined analogously: imw(A) =∫ 1

0
w(h)mh(A) dh, A ∈ 2X , where mh are calculated, for example, by the for-

mula (5) (if A ∈ 2X is not a focal element for h, then we assume mh(A) = 0).

6 Conclusion

The main advantage of describing bodies of evidence using threshold functions is
that we can control the degree of uncertainty and conflict in such a description.
In addition, the set of all represents with different thresholds gives us a more
complete description of bodies of evidence and their aggregation. The problems
of finding the optimal threshold at which a compromise is achieved between the
accuracy of the description and uncertainty, between uncertainty and internal
conflict, etc. can be posed. Some examples of such problems have been consid-
ered.
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