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Abstract. The threshold aggregation rule used to rank alternatives that
are evaluated against a set of criteria is known in decision theory. The
generalization of the threshold aggregation rule to the case when the
estimates in the alternatives are described by fuzzy numbers is consid-
ered in the paper. The fuzzy threshold aggregation procedure has been
developed and studied. The procedure for blurring point data by infor-
mation about the reliability of such data has been developed and studied
as well. An example of using fuzzy threshold aggregation when making
decisions on the admission of articles in conference management systems
is considered (for example, EasyChair).

Keywords: Threshold rule · Aggregation of alternatives · Fuzzy criteria
· Conference management systems.

1 Introduction

The rules for aggregation of individual preferences are considered and investi-
gated in the social choice theory [1]. Such rules are used in the problem of ranking
alternatives, each of which is evaluated according to a certain set of criteria. In
some cases, aggregation rules should be non-compensatory. This implies that low
scores on one criterion cannot be compensated for by high scores on others. For
example, such a rule is often used when making decisions about the publication
of articles based on the feedback of several reviewers, when choosing products
by characteristics, etc. The so-called threshold rule [2,3] is one of the popular
aggregation rules that has a non-compensatory property.

In some cases, some or all of the characteristics of alternatives may be fuzzy.
Then the problem of generalizing the threshold aggregation rule to the case
of fuzzy data is relevant. The present article is devoted to the solution of this
problem.

The application of the proposed generalization of the threshold aggregation
rule to fuzzy data is illustrated by the example of ranking articles according

⋆ The results of the project “Study of models and methods of decision-making un-
der conditions of deep uncertainty: anticipating natural disasters and logistics chal-
lenges” carried out within the framework of the Basic Research Program at the Na-
tional Research University Higher School of Economics (HSE University) in 2023,
are presented in this work.
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to the results of (point) assessments of reviewers and considering the degrees
of confidence in their assessments. These degrees of confidence are used to blur
point estimates and generate fuzzy data. The general properties of such blurs
are also discussed in the article.

The rest of the article has the following structure. The axiomatics of the
non-fuzzy threshold aggregation rule is discussed in Section 2. In Section 3, the
problem of threshold aggregation with fuzzy data is formulated and a general
approach to solving this problem is discussed. The formation of fuzzy estimates
from point expert data and information about their reliability is discussed in
Section 4. Section 5 gives a numerical example of applying the threshold aggre-
gation rule with fuzzy data when reviewing articles in a conference management
system. Finally, Section 6 draws some conclusions from the study.

2 Non-Fuzzy Formulation of the Threshold Aggregation
Problem

The problem of ranking alternatives of a certain set X of evaluated by n criteria
in a three-gradation scale is being considered. We can assume in this case that
the alternatives are represented by n-dimensional vectors: x = (x1, ..., xn), where
xi ∈ {1, 2, 3}. It is required to find such a transformation (aggregation operator)
φn = φ : X → R that satisfies the conditions (axioms) [3]:

1) Pareto-domination: if x,y ∈ X and xi ≥ yi ∀i, ∃s : xs > ys, then φ(x) >
φ(y);

2) pairwise compensability of criteria: if x,y ∈ X and vk(x) = vk(y) k = 1, 2,
then φ(x) = φ(y), where vk(x) = |{i : xi = k}| is the number of estimates
of k in the alternative x, k = 1, 2, 3;

3) threshold noncompensability: φ(2, . . . , 2︸ ︷︷ ︸
n

) > φ(x) ∀x ∈ X: ∃s : xs = 1;

4) the reduction axiom: if ∀x,y ∈ X ∃s : xs = ys, then φn(x) > φn(y) ⇔
φn−1(x−s) > φn−1(y−s), where x−s = (x1, . . . , xs−1, xs+1, . . . , xn).

This problem was formulated and studied in [3]. It is shown that the lex-
icographic aggregation rule is a solution to this problem: φ(x) > φ(y) ⇔
v1(x) < v1(y) or ∃j ∈ {1, 2} : vk(x) = vk(y) ∀k ≤ j and vk+1(x) < vk+1(y).
This problem was generalized in [2] to the case of m-gradation scales, m ≥ 3.

3 Formulation and Solution of the Problem of Threshold
Aggregation with Fuzzy Data

Let us now assume that the alternatives are represented by n-dimensional vectors
of fuzzy numbers x̃ = (x̃1, . . . , x̃n). Each fuzzy number belongs to one of three
classes: the low score class L, the median score class M , or the high score class
H. The distribution of fuzzy numbers by class can either be known in advance,
or can be determined by the nearest neighbour method with respect to reference
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numbers L0, M0 and H0, and each class x̃i ∈ argmin
S∈{L,M,H}

d(x̃i, S0), where d is

some metric (or pseudometric) on the set of fuzzy numbers [5].

We will assume that the supports of all fuzzy estimators of the class L are
located on the segment [−a, 0], a > 0, the supports of all fuzzy estimators of the
class H are located on the segment [0, a], a > 0, and the supports of all fuzzy
estimators of the class M are located on the segment [−b, b], 0 < b < a. Crisp
numbers L0 = −a, M0 = 0 and H0 = a are reference elements.

We will consider a set of median positive estimates M+ = {x̃ ∈M :
d(x̃,M+

0 ) ≤ d(x̃,M−
0 )

}
and a set of median negative estimates M− = {x̃ ∈M :

d(x̃,M−
0 ) ≤ d(x̃,M+

0 )
}
, which are subsets of the set of median estimates M ,

where M−
0 = −b, M+

0 = b are the reference estimates of subclasses M− and
M+, respectively.

Note that those estimates for which equality d(x̃,M−
0 ) = d(x̃,M+

0 ) holds
(and only they) fall into both subsets.

General scheme of threshold fuzzy ranking.

The following steps are performed for each alternative x̃ = (x̃1, . . . , x̃n) and
each class S ∈ {L,M−,M+, H}.

1. The distances d (x̃i, S0) between all estimates x̃i ∈ S of one class and the
reference fuzzy (or crisp) number S0 of this class are determined (the values
d (x̃i,M0) and d

(
x̃i,M

±
0

)
are calculated for the class M).

2. The normalized function FS (x̃i) = ψ (d (x̃i, S0)) of the proximity of the
estimate to the reference number of the class is calculated, where nonincreasing
function ψ : [0,+∞) → [0, 1] satisfies the condition ψ(0) = 1. The value FS (x̃i)
characterizes the normalized degree of confidence that the estimate x̃i ∈ S. It
can be considered as a function of belonging to a subset S defined on a set of
fuzzy numbers.

3. Let’s find values

vS (x̃) =
∑
x̃i∈S

FS (x̃i). (1)

for the alternative x̃ = (x̃1, . . . , x̃n) and each class S ∈ {L,M−,M+, H}. The
value vS(x) characterizes the cardinality of the set of fuzzy estimates of the class
S.

4. Let’s apply the lexicographic aggregation rule: φ (x̃) > φ (ỹ) ⇔ vL (x̃) <
vL (ỹ) or vL (x̃) = vL (ỹ), vM− (x̃) < vM− (ỹ) or vL (x̃) = vL (ỹ), vM− (x̃) =
vM− (ỹ), vM+ (x̃) < vM+ (ỹ) or vL (x̃) = vL (ỹ), vM− (x̃) = vM− (ỹ), vM+ (x̃) =
vM+ (ỹ), vH (x̃) < vH (ỹ).

Remark 1. If the fuzzy estimates are crisp numbers on a three-gradation scale
{L0,M0, H0}, then the values vS (x̃) coincide with the values ,vS (x) = |{i : xi ∈ S}|
S ∈ {L,M−,M+, H} (M− = M+ = M) and the threshold fuzzy aggregation
will coincide with the usual threshold aggregation.
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Remark 2. We can use the robust ”soft” comparison <ε and equality =ε instead
of the specified ”hard” comparison of the values vS (x̃) in step 4 of the aggre-
gation procedure: a<εb, if a < b − ε and a=εb, if |a− b| ≤ ε, where ε ≥ 0 (the
persistence parameter).

In this article, we will consider the value dδ(A,B) = |V al(A)− V al(B)| +
δ |Am(A)−Am(B)| [7] as the distance between fuzzy numbers A and B, where
V al(A) and Am(A) are the expected value and ambiguity of the fuzzy number A,
respectively. The coefficient δ > 0 regulates the priority of importance between
the divergence of expected values and ambiguity. Below we will assume that
δ ≤ 1

2 . If Aα = {t : µA(t) ≥ α} = [lA(α), rA(α)] is a α-cut of a fuzzy number (µA

is a membership function), α ∈ (0, 1], then [6] V al(A) = 1
2

∫ 1

0
(lA(α) + rA(α)) dα,

Am(A) =
∫ 1

0
(rA(α)− lA(α)) dα [4]. Then the following lemma is true.

Lemma 1. The following equalities are valid under the indicated assumptions:

dδ(x̃, L0) = a+ V al(x̃) + δAm(x̃) ∀x̃ ∈ L,

dδ(x̃,M
−
0 ) = b+ V al(x̃) + δAm(x̃) ∀x̃ ∈M,

dδ(x̃,M
+
0 ) = b− V al(x̃) + δAm(x̃) ∀x̃ ∈M,

dδ(x̃, H0) = a− V al(x̃) + δAm(x̃) ∀x̃ ∈ H.

We will use a linear function ψ(t) = 1 − 1
t0
t, t ∈ [0, t0] at step 2 of the

threshold aggregation. Then the validity of the following assertion follows from
the lemma.

Proposition 1. The following equalities are valid under the indicated assump-
tions:

vL(x̃) =
δ

1 + δ
|L(x̃)| − 1

a(1 + δ)

∑
x̃i∈L

(V al(x̃i) + δAm(x̃i)),

vM−(x̃) =
1 + 2δ

2(1 + δ)

∣∣M−(x̃)
∣∣− 1

2b(1 + δ)

∑
x̃i∈M−

(V al(x̃i) + δAm(x̃i)),

vM+(x̃) =
1 + 2δ

2(1 + δ)

∣∣M+(x̃)
∣∣+ 1

2b(1 + δ)

∑
x̃i∈M+

(V al(x̃i)− δAm(x̃i)),

vH(x̃) =
δ

1 + δ
|H(x̃)|+ 1

a(1 + δ)

∑
x̃i∈H

(V al(x̃i)− δAm(x̃i)),

(2)

where S(x̃) = {x̃i ∈ S} , S ∈ {L,M−,M+, H}.

4 Formation of Fuzzy Estimates from Point Data

Below we will consider an example of threshold aggregation of the results of
reviewing conference reports. These results from each reviewer i are represented
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by a pair of numbers, a point estimate of the quality of the article xi (higher value
corresponds to higher quality) and the degree of confidence in the correctness
of their decision λi (higher value corresponds to greater confidence). Therefore,
we consider the general procedure for ”blurring” point estimates with respect to
this information {(xi, λi)}ni=1.

Without loss of generality, we can assume that xi ∈ [−a, a]. Information
about the degree of confidence in the correctness of one’s decision can be used to
blur interval or point estimates. The lower the degree of confidence, the greater
should be the degree of blurring and ambiguity of fuzzy estimates. It can be
considered that the degree of blur should be zero for estimates with the highest
degree of confidence. In addition, ”extreme” estimates with a low degree of con-
fidence should not move away from the neutral estimate after blurring. Shifting
a low confidence estimate to a neutral estimate makes it less conflicting with
other estimates, which is in line with the ”no conflict with ignorance” paradigm.

Formally, the dependence of blurring on the degree of confidence can be
modeled using the modifier mλ : [0, 1] → [0, 1], mλ(0) = 0, mλ(1) = 1 according
to the rule µmλA(t) = mλ(µA(t)), where A is a fuzzy estimate with a degree of
confidence λ ∈ [0, 1]. The parametric modifier mλ must satisfy the conditions:

1) m1A = A;

2) Fuz(mλA) ≥ Fuz(mτA) for λ ≤ τ , where Fuz is some (fixed) degree of
fuzziness of a fuzzy number;

3) Am(mλA) ≥ Am(mτA) for λ ≤ τ , where Am is some (fixed) measure of the
ambiguity of a fuzzy number;

4) d(mλA,M0) ≤ d(mτA,M0) for λ ≤ τ and A is an ”extreme” fuzzy estimate,
where d is some metric (or pseudometric) on the set of fuzzy numbers, M0

is the reference number of the median score class.

For example, if fuzzy estimates are described by trapezoidal fuzzy numbers,
then we can assume that the recommendation itself determines the kernel of
the corresponding fuzzy number, and the degree of confidence determines the
discrepancy between the kernel and the support of the fuzzy number. The lower
the degree of confidence, the larger the discrepancy should be. The kernel should
match the support in the case of the highest degree of confidence. In this case,
the initial estimate A will be represented by a real number or segment [a1, a2],
a1 ≤ a2, which can be considered a trapezoidal fuzzy number A = (a1, a1, a2, a2).
The modifier must satisfy conditions 1), 4) and:

2’) ker(mλA) ⊆ ker(mτA) and supp(mλA) ⊇ supp(mτA) for λ ≤ τ ;

3’) |ker(mλA)|+ |supp(mλA)| ≥ |ker(mτA)|+ |supp(mτA)| for λ ≤ τ .

Conditions 2) and 3) follow from conditions 2’) and 3’) if we use Fuz(A) =
|suppA\ kerA| [7], Am(A) = 1

2 (|suppA|+ |kerA|) measures as degrees of fuzzi-
ness and ambiguity of trapezoidal fuzzy numbers, where |·| is the measure of a
set on the number line.
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Example 1. Let nonnegative nonincreasing functions h1(λ) and h2(λ) satisfy the
condition h1(1) = h2(1) = 0. Consider the following external blur modifier

mλA = (a1 − h1(λ), a1, a2, a2 + h2(λ)).

Then we have Fuz (mλA) = h1(λ)+h2(λ) andAm (mλA) = a2−a1+ 1
2 (h1(λ) + h2(λ)).

It is easy to see that the external blur modifier mλ satisfies conditions 1) – 3).

Proposition 2. The external blur modifier mλA = (a1 − h1(λ), a1, a2, a2 +
h2(λ)) satisfies condition 4) in the metric dδ if and only if

(h2(λ)− h2(τ)) (1− 2δ) ≥ (h1(λ)− h1(τ)) (1 + 2δ) for mλA, mτA ∈ L,

(h2(λ)− h2(τ)) (1 + 2δ) ≤ (h1(λ)− h1(τ)) (1− 2δ) for mλA, mτA ∈ H

∀ 0 ≤ λ ≤ τ ≤ 1.

Corollary 1. If the external blur modifier mλA = (a1−h1(λ), a1, a2, a2+h2(λ))
satisfies condition 4), then |∆h2| ≥ |∆h1| for mλA ∈ L and |∆h1| ≥ |∆h2| for
mλA ∈ H.

5 Numerical Example

We will consider an example of ranking by the developed method of articles/
reports of conferences in the conference management system, such as EasyChair
(https://easychair.org). This system uses a septennial scoring system xi ∈
{−3,−2,−1, 0, 1, 2, 3}, corresponding to the recommendations ”strong reject”,
”reject”, ”weak reject”, ”borderline paper”, ”weak accept”, ”accept”, ”strong
accept”. In addition, the reviewer gives an assessment on a five-fold scale (0.2
– ”none”, 0.4 – ”low”, 0.6 – ”medium”, 0.8 – ”high”, 1 – ”expert”) about the
degree of confidence in the correctness of his decision: λi ∈ {0.2, 0.4, 0.6, 0.8, 1}.

Data
{
(x

(k)
i , λ

(k)
i )

}5

i=1
of n = 5 reviewers on 4 articles are presented in

Table 1 (i is the index of the reviewer, k is the index of the article, k = 1, . . . , 4),

where x(k) = (x
(k)
i1
, . . . , x

(k)
i5

) is an ascending vector of ratings of all reviewers

relative to the article k, t(k) = (t
(k)
i1
, . . . , t

(k)
i5

) is the same vector in a three-
gradation scale {L,M,H}, L = {−3,−2,−1}, M = {0}, H = {1, 2, 3}.

Note that if we take into account only the three-grade recommendations of
the reviewers (L = {−3,−2,−1}, M = {0}, H = {1, 2, 3}) and do not take
into account the degree of confidence, then we will get the following vectors of
estimates v(x(k)) =

(
vL(x

(k)), vM (x(k)), vH(x(k))
)
for each article k = 1, . . . , 4

(see Table 2).
If, however, estimates close to the medium ±1 with a low degree of confi-

dence λ ≤ 0.6 are attributed to the class M , then we will obtain the following
(extended) vectors of estimates vext(x

(k)), k = 1, . . . , 4 and a new ranking (see
Table 2).

https://easychair.org
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Table 1. Initial data on the assessments of reviewers.

paper 1 paper 2 paper 3 paper 4

reviewer 1 (2, 0.8) (2, 1) (1, 0.8) (0, 0.6)

reviewer 2 (1, 1) (2, 0.8) (2, 0.6) (1, 0.4)

reviewer 3 (0, 0.8) (0, 0.6) (−1, 0.6) (1, 1)

reviewer 4 (3, 0.4) (−1, 0.4) (0, 0.6) (2, 0.2)

reviewer 5 (2, 0.6) (1, 0.6) (1, 1) (2, 1)

x(k) (0, 1, 2, 2, 3) (−1, 0, 1, 2, 2) (−1, 0, 1, 1, 2) (0, 1, 1, 2, 2)

t(k) (M,H,H,H,H) (L,M,H,H,H) (L,M,H,H,H) (M,H,H,H,H)

Let us now consider fuzzy blurring of point estimates by trapezoidal fuzzy
numbers using the technique described above.

Let us put each point estimate x ∈ {−3,−2,−1, 0, 1, 2, 3} in correspondence
with the segment: [0.75(x− 1), 0.75x] for x ∈ {−3,−2,−1}; [0.75x, 0.75(x+ 1)]
for x ∈ {1, 2, 3}; [−0.75, 0.75] for x = 0. This segment will be the kernel ker (x̃)
of the trapezoidal fuzzy number x̃. For example, if x = 2 (”weak accept”), then
ker (x̃) = [1.5, 2.25].

We will use the modifier of the external blurringmλA = (a1−h1(λ), a1, a2, a2+
h2(λ)) of the segment-kernel A = [a1, a2], where the blurring functions h1(λ),
h1(λ) will be chosen as follows: h1(λ) = 0, h2(λ) =

1−λ
5+λ for A ∈ L; h1(λ) =

1−λ
5+λ ,

h2(λ) = 0 for A ∈ H; h1(λ) = h2(λ) =
1−λ
5+λ for A ∈M . Such a modifier satisfies

all conditions 1) – 4) of Section 4.
Next, we calculate the vectors of fuzzy estimates v(x̃(k)) =(

vL(x̃
(k)), vM−(x̃(k)), vM+(x̃(k)), vH(x̃(k))

)
by formulas (2) (a = 3, b = 1.5, δ =

0.3) (see Table 2).

Table 2. Results of crisp and fuzzy threshold aggregations.

paper 1 paper 2 paper 3 paper 4

v(x(k)) (0, 1, 4) (1, 1, 3) (1, 1, 3) (0, 1, 4)

vext(x
(k)) (0, 1, 4) (0, 3, 2) (0, 2, 3) (0, 2, 3)

v(x̃(k)) (0, 0.5, 0.5, 2.59) (0, 1.33, 1.33, 1.3) (0, 1.33, 0.5, 1.57) (0, 0.5, 1.33, 1.75)

The final rankings obtained by the methods of crisp and fuzzy threshold
aggregations are given in Table 3.

The above example shows that fuzzy threshold aggregation is more sensitive
to ranking than the crisp rule. Some alternatives that were indistinguishable
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Table 3. Results of crisp and fuzzy threshold ranking.

ranking

v(x(k)) φ(x(1)) = φ(x(4)) > φ(x(3)) = φ(x(2))

vext(x
(k)) φ(x(1)) > φ(x(4)) = φ(x(3)) > φ(x(2))

v(x̃(k)) φ(x(1)) > φ(x(4)) > φ(x(3)) > φ(x(2))

with respect to the non-fuzzy threshold aggregation rule began to differ with
respect to the fuzzy rule.

6 Conclusion

The paper developed a procedure for threshold ranking of alternatives repre-
sented by vectors of fuzzy numbers. The procedure is described for the case of
a three-grade fuzzy rating scale but can be generalized to an arbitrary case of
m-gradation scales, m ≥ 3.

In addition, the paper proposes and investigates a procedure for blurring
point expert data on information about the degree of confidence of experts in
their estimates. Both the general properties of such estimates and the properties
in relation to specific blur models are studied.

The specified procedures of fuzzy threshold aggregation and blurring are
demonstrated on the example of ranking articles according to the recommenda-
tions of reviewers and the degree of their confidence in their recommendations.

In the future, it is of interest to develop the axiomatic of fuzzy threshold
aggregation.
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