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Abstract The Dempster–Shafer theory of evidence considers data that have a
frequency-set nature (the so-called body of evidence). In recent years, there has
been interest in clustering such objects to approximate them with simpler bodies of
evidence, to analyze the inconsistency of information, reducing the computational
complexity of processing algorithms, revealing the structure of the set of focal el-
ements, etc. The article discusses some existing algorithms for clustering evidence
bodies and suggests some new algorithms and approaches in such clustering.

1 Introduction

The Dempster–Shafer evidence theory [2, 15] considers data that is represented by a
pair of objects 𝐹 = (A, 𝑚), whereA is the set of non-empty subsets (focal elements)
of some base set 𝑋 , 𝑚 is a non-negative numerical function of sets (mass function)
defined on the set of all subsets of the base set. The focal element 𝐴 ∈ A describes
the membership set of the true alternative 𝑥 ∈ 𝐴 (for example, the air temperature
forecast), and the mass 𝑚(𝐴) of this focal element 𝐴 specifies the degree of belief
that 𝑥 ∈ 𝐴. Some set functions are put into one-to-one correspondence with the
body of evidence. For example, there are such functions as belief and plausibility
functions, which can be considered as the lower and upper bounds of the probability
measure.

The tools for aggregating information presented by bodies of evidence, consid-
ering the reliability of information sources, their inconsistency and inaccuracy, are
widely developed in the theory of evidence. However, many of the evidence body
processing operations are computationally complex. In addition, it is required to
reveal the enlarged structure of the set of focal elements in several problems, to
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analyze the degree of homogeneity of the body of evidence, its internal inconsis-
tency, etc. Therefore, there is a need to approximate complex evidence bodies with
many focal elements by simpler evidence bodies with a smaller number of focal
elements. Both an approximation of a set function (for example, a belief function)
corresponding to the body of evidence by another set function from a given class,
and an approximation based on clustering of a set of focal elements are considered.
Pignistic probability is an example of the first type of approximation [16]. Below we
consider only an approximation based on the clustering of the set of focal elements.

Evidential data have their own frequency-set specifics. Therefore, direct ana-
logues of the well-known clustering algorithms for ’point’ data either need deep
modernization or additional interpretability.

This article will analyze some modern methods for clustering bodies of evidence.
The article is of an overview and methodological nature, but it will consider a new
method, which is an analogue of the k-means method for evidence bodies.

2 Necessary Information from Evidence Theory

Let 𝑋 be some finite (for simplicity) basic set, 2𝑋 be the set of all subsets from 𝑋 . Let
us consider some subset of non-empty sets (focal elements) A from 2𝑋 and a non-
negative set function (mass function) 𝑚 : 2𝑋 → [0, 1] that satisfies the conditions:
𝑚(𝐴) > 0 ⇔ 𝐴 ∈ A,

∑
𝐴∈A 𝑚(𝐴) = 1. A pair 𝐹 = (A, 𝑚) is called a body of

evidence. Let F (𝑋) be the set of all evidence bodies on 𝑋 .
There is a one-to-one correspondence between the body of evidence 𝐹 = (A, 𝑚)

and the belief function 𝐵𝑒𝑙 (𝐴) = ∑
𝐵⊆𝐴𝑚(𝐵) or the plausibility function 𝑃𝑙 (𝐴) =∑

𝐵∩𝐴≠∅ 𝑚(𝐵), which can be considered as lower and upper bounds for the probability
𝑃(𝐴), respectively. The following special cases of evidence bodies are distinguished:

1) a categorical body of evidence of the form 𝐹𝐴 = ({𝐴}, 1), i.e., a non-empty
set 𝐴 is the only focal element with unit mass;

2) a vacuous body of evidence 𝐹𝑋 = ({𝑋}, 1).
An arbitrary body of evidence 𝐹 = (A, 𝑚) can be represented as 𝐹 =∑
𝐴∈A 𝑚(𝐴)𝐹𝐴.
The body of evidence of the type 𝐹𝛼

𝐴
= 𝛼𝐹𝐴 + (1 − 𝛼)𝐹𝑋 is called simple.

The body of evidence 𝐹 = (A, 𝑚) on 𝑋 can be represented as a weighted
hypergraph with a set of vertices 𝑋 , a set of hyperedges A and their weights 𝑚(𝐴),
𝐴 ∈ A.

Example 1. Let we have 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and the body of evidence 𝐹 =

0.35𝐹{𝑎} + 0.15𝐹{𝑎,𝑏} + 0.2𝐹{𝑎,𝑐} + 0.25𝐹{𝑑,𝑒} + 0.05𝐹{𝑐,𝑑,𝑒} is given on 𝑋 , i.e.
A = {{𝑎} , {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑑, 𝑒}, {𝑐, 𝑑, 𝑒}}. The hypergraph of the evidence body 𝐹

is shown in Fig. 1. �

If two sources of information are represented by the bodies of evidence 𝐹1 =

(A1, 𝑚1) and 𝐹2 = (A2, 𝑚2) on 𝑋 , then the degree of conflict (contradiction)
between these sources can be assessed using some functional (measure of external
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conflict) [10]𝐶𝑜𝑛 : F (𝑋) ×F (𝑋) → [0, 1], which takes on greater values the more
pairs of non-overlapping (or ’weakly over-lapping’) focal elements of two evidence
bodies with large masses exist. The classical measure of external conflict is [2]

𝐶𝑜𝑛(𝐹1, 𝐹2) =
∑︁

𝐴∩𝐵=∅
𝑚1 (𝐴)𝑚2 (𝐵),

which we will use below. In addition to the measure of external conflict, the mea-
sure of internal conflict 𝐶𝑜𝑛𝑖𝑛 : F (𝑋) → [0, 1] of one body of evidence is also
considered [11]. The ability to evaluate internal conflict is one possible application
of evidence body clustering (see Remark 2 below).

3 Basic Approaches for Clustering Body of Evidence

The clustering of the body of evidence 𝐹 = (A, 𝑚) is primarily related to the
clustering of the set of its focal elements A. There are two formulations of the
problem of clustering a set of focal elements.

1. It is required to find such a subset of A′ ⊆ 2𝑋 that would be ’close’ to A in
some sense, but |A′ | � |A|. The new mass function 𝑚′ (𝐴), is found either by
a local redistribution of the masses 𝑚(𝐵) of the sets 𝐵 involved in the formation
of a new focal element 𝐴 ∈ A′, or by a global redistribution that minimizes the
discrepancy functional between 𝐹 = (A, 𝑚) and 𝐹′ = (A′, 𝑚′).

2. It is required to find such a partition (or cover) of the set A of focal elements
into subsets (clusters) {A1, . . . ,A𝑙} that would correspond in some sense to the
structure of the set A.

The first type of clustering is used to reduce the computational complexity of
algorithms for processing evidence bodies or solving other approximation problems.
The second type of clustering is used to identify the structure of a set of focal
elements, to estimate the degree of heterogeneity, inconsistency, etc.

Next, we consider some implementations of clustering of these two types, namely:
1) hierarchical clustering;
2) clustering based on the density function of the distribution of conflict focal

elements;
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3) clustering based on conflict optimization (including an analogue of the k-means
method for evidence bodies).

3.1 Hierarchical Inner and Outer Clustering

The simplest approximation procedure by clustering was proposed in [12], where
’close’ focal elements or focal elements with small masses were combined. In this
case, the masses of the combined focal elements were summed up. A more complex
clustering scheme, which is analogous to divisional-agglomerative algorithms [13] in
some sense, has been proposed in [7] and [14, 3]. Two clusterings are the result of this
algorithm. One of them is internal in the form of evidence body 𝐹− = (A− , 𝑚−), the
other is external in the form 𝐹+ = (A+, 𝑚+). The set of focal elementsA− of internal
clustering is the intersection of some sets fromA. While the set of focal elementsA+
of external clustering is the union of some sets fromA. The masses of focal elements
that are united in A+ or intersect in A− are summarized: 𝑚− (𝐵) = ∑

𝐴𝑚(𝐴) if
𝐵 =

⋂
𝐴 ∈ A− and 𝑚+ (𝐶) = ∑

𝐴𝑚(𝐴) if 𝐶 =
⋃

𝐴 ∈ A+. In this case, such a
pair (𝐴, 𝐵) of focal elements is chosen for union/intersection, which delivers the
minimum increment of the measure of imprecision [5] 𝑓 (𝐹) = ∑

𝐴∈A 𝑚(𝐴) |𝐴|.
The increments of this measure at the union/intersection of two sets and will be

equal
𝛿∪ (𝐶, 𝐷) = (𝑚(𝐶) + 𝑚(𝐷)) |𝐶 ∪ 𝐷 | − 𝑚(𝐶) |𝐶 | − 𝑚(𝐷) |𝐷 |

and
𝛿∩ (𝐶, 𝐷) = 𝑚(𝐶) |𝐶 | + 𝑚(𝐷) |𝐷 | − (𝑚(𝐶) + 𝑚(𝐷)) |𝐶 ∩ 𝐷 | ,

respectively. Therefore, the algorithm unites (intersects) those focal elements step by
step, which deliver the minimum to the functional 𝛿∪ (𝐶, 𝐷) (𝛿∩ (𝐶, 𝐷)) at 𝐶 ≠ 𝐷.
These procedures are repeated until a predetermined number 𝑙 < |A| of focal
elements remains, or some proximity condition between the original body of evidence
𝐹 = (A, 𝑚) and its clustering is satisfied. As a result of such clustering, bodies of
evidence 𝐹− and 𝐹+ are obtained, which in the theory of belief functions are called
specialization and generalization of the body of evidence 𝐹, respectively [4]. Thus,
the algorithm for hierarchical inner and outer clustering will be as follows.

Algorithm 1.
Input data: body of evidence 𝐹 = (A, 𝑚), the number of focal elements in

clustering 𝑙.
Output data: bodies of evidence 𝐹− = (A− , 𝑚−) and 𝐹+ = (A+, 𝑚+).
1. Let 𝐹− = 𝐹+ = 𝐹.
2. Let’s find the pairs (𝐴− , 𝐵−) = arg min𝐶≠𝐷𝛿∩ (𝐶, 𝐷) and (𝐴+, 𝐵+) =

arg min𝐶≠𝐷𝛿∪ (𝐶, 𝐷) in A− and A+, respectively. Let’s replace a pair (𝐴− , 𝐵−)
with a set 𝐴− ∩𝐵− inA− , and a pair (𝐴+, 𝐵+) with a set 𝐴+∪𝐵+ inA+. We get new
setsA− andA+. Let’s recalculate the masses: 𝑚− (𝐴−∩𝐵−) ← 𝑚− (𝐴−) +𝑚− (𝐵−),
𝑚+ (𝐴+∪𝐵+) ← 𝑚+ (𝐴+) +𝑚+ (𝐵+), the masses of the remaining focal elements from
A− and A+ do not change.
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3. Step 2 is repeated until 𝑙 < |A− | = |A+ |. �
Example 2. We have the following transformations of sets of focal elements

for the outer and inner approximations of the body of evidence from Example 1
and 𝑙 = 2, respectively (pairs of merged/intersected focal elements at each step are
marked in bold):

A = {{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝒅, 𝒆}, {𝒄, 𝒅, 𝒆}} → {{𝒂}, {𝒂, 𝒃}, {𝑎, 𝑐}, {𝑐, 𝑑, 𝑒}} →

→ {{𝒂, 𝒃}, {𝒂, 𝒄}, {𝑐, 𝑑, 𝑒}} → {{𝑎, 𝑏, 𝑐}, {𝑐, 𝑑, 𝑒}} = A+,

A = {{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝒅, 𝒆}, {𝒄, 𝒅, 𝒆}} → {{𝒂}, {𝑎, 𝑏}, {𝒂, 𝒄}, {𝑑, 𝑒}} →

→ {{𝒂}, {𝒂, 𝒃}, {𝑑, 𝑒}} → {{𝑎}, {𝑑, 𝑒}} = A− .

We obtain the outer and inner approximations of the evidence body 𝐹, respectively
𝐹+ = 0.7𝐹{𝑎,𝑏,𝑐} + 0.3𝐹{𝑐,𝑑,𝑒} and 𝐹− = 0.7𝐹{𝑎} + 0.3𝐹{𝑑,𝑒} (see Fig.2). �
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Fig. 2 Inner and outer clustering

3.2 Clustering Based on Conflict Density Distribution

Another approach to clustering is to find a small (by cardinality) subset A′ ⊆ A of
’significant’ focal elements. What characteristics of focal elements can be considered
significant? These can be the mass of the focal element, its cardinality (a measure in
the case of a measurable 𝑋), the number of other focal elements that intersect with
the given one, etc. In [1], these characteristics were combined in the concept of the
density of distribution of conflict focal elements. Non-overlapping focal elements
are called conflicting.

A function 𝜓𝐹 : 2𝑋 → [0, 1] is called the conflict density distribution of the
evidence body 𝐹 = (A, 𝑚) if it satisfies the conditions:

1. 𝜓𝐹 (𝐴) = 0 if𝐵 ∩ 𝐴 ≠ ∅ ∀𝐵 ∈ A;
2. 𝜓𝐹 (𝐴) = 1 if 𝐵 ∩ 𝐴 = ∅ ∀𝐵 ∈ A;
3. 𝜓𝛼𝐹1+𝛽𝐹2 = 𝛼𝜓𝐹1 + 𝛽𝜓𝐹2 ∀𝐹1, 𝐹2 ∈ F (𝑋), where 𝛼 + 𝛽 = 1, 𝛼 ≥ 0, 𝛽 ≥ 0.

It can be shown that the conflict density function will be equal to 𝜓𝐹 (𝐴) =∑
𝐵:𝐴∩𝐵=∅ 𝑚(𝐵) = 1 − 𝑃𝑙 (𝐴). ’Significant’ focal elements in [1] were those that
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maximize the function 𝜑𝐹 (𝐴) = 𝑚(𝐴)𝜓𝐹 (𝐴), 𝐴 ∈ A. The distance between the
selected focal elements was another characteristic that was considered in [1] when
choosing elements forA′ ⊆ A. This distance should not be too small. Thus, the set
A′ ⊆ A will consist of sets that provide a large value of the function 𝜑𝐹 and are
located at a sufficiently large distance from each other. Let 𝑑 (𝐴, 𝐵) be a metric on
the set of focal elements. Then the algorithm for choosing the set A′ ⊆ A will be
as follows.

Algorithm 2.
Input data: body of evidence 𝐹 = (A, 𝑚), the minimum possible value ℎ1 > 0

of 𝜑𝐹 (𝐴) for every 𝐴 ∈ A′; the minimum possible distance ℎ2 > 0 between focal
elements from A′.

Output data: the body of evidence A′ ⊆ A.
1. Let the set of focal elements be ordered in descending order of the function

𝜑𝐹 : 𝜑𝐹 (𝐴1) ≥ 𝜑𝐹 (𝐴2) ≥ ... ≥ 𝜑𝐹 (𝐴𝑘). Put A′ = {𝐴1}, 𝑠 := 2.
2. If 𝜑𝐹 (𝐴𝑠) ≤ ℎ1, then the end. Otherwise, go to step 3.
3. If min𝐴∈A′𝑑 (𝐴, 𝐴𝑠) > ℎ2, then A′ := A′ ∪ {𝐴𝑠}, 𝑠 := 𝑠 + 1, go to step 2. �

The function 𝑑 (𝐴, 𝐵) = |𝐴Δ𝐵 | can be used as a metric between focal elements,
where Δ is the symmetric difference of sets. To take into account not only the mutual
position of focal elements, but also their masses, one can use metrics on the set of
all evidence bodies F (𝑋) [9]. For example, if a certain metric 𝜌 is chosen on F (𝑋),
then the metric on 2𝑋 can be defined as 𝑑 (𝐴, 𝐵) = 𝜌(𝐹𝑚(𝐴)

𝐴
, 𝐹

𝑚(𝐵)
𝐵
), where 𝐹

𝑚(𝐴)
𝐴

,
𝐹
𝑚(𝐵)
𝐵

are simple evidence bodies. For example, 𝐹𝑚(𝐴)
𝐴

= 𝑚(𝐴)𝐹𝐴+ (1−𝑚(𝐴))𝐹𝑋.
In particular, the following metric that is popular in evidence theory [8] between
evidence bodies 𝐹1 = (A1, 𝑚1) and 𝐹2 = (A2, 𝑚2) can be used:

𝜌𝐽 (𝐹1, 𝐹2) =
√√

1
2

∑︁
𝐴,𝐵∈2𝑋\{∅}

𝑠𝐴,𝐵 (𝑚1 (𝐴) − 𝑚2 (𝐴)) (𝑚1 (𝐵) − 𝑚2 (𝐵)),

where 𝑠𝐴,𝐵 = |𝐴 ∩ 𝐵 |/|𝐴 ∪ 𝐵 | is the Jaccard index. It is easy to see that
𝜌𝐽 (𝐹1, 𝐹2) ∈ [0, 1] ∀𝐹1, 𝐹2 ∈ F (𝑋). It can be shown that then the metric
𝑑𝐽 (𝐴, 𝐵) = 𝜌𝐽 (𝐹𝑚(𝐴)

𝐴
, 𝐹

𝑚(𝐵)
𝐵
) takes the form.

Lemma 1. 𝑑2
𝐽
(𝐴, 𝐵) = (𝑚(𝐴) − 𝑚(𝐵))2 + 𝑚(𝐴)𝑚(𝐵) |𝐴Δ𝐵 ||𝐴∪𝐵 |−

(𝑚(𝐵) − 𝑚(𝐴)) |𝐵 |𝑚(𝐵)− |𝐴|𝑚(𝐴)|𝑋 | .
In particular, if 𝑚(𝐴) = 𝑚(𝐵) = 𝑚, then 𝑑𝐽 (𝐴, 𝐵) = 𝑚

√︁
|𝐴Δ𝐵 |/|𝐴 ∪ 𝐵 |.

Note that Algorithm 2 can be considered as an evidential analogue of the popular
’point’ the DBSCAN algorithm (Density Based Spatial Clustering of Applications
with Noise, [6]).

Example 3. Algorithm 2 will give the following result for the evidence body from
Example 1 using the metric 𝑑𝐽 , ℎ1 = 0.1, ℎ2 = 0.2.
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Step 1. 𝜑𝐹 ({𝑎}) = 0.105, 𝜑𝐹 ({𝑎, 𝑏}) = 0.045, 𝜑𝐹 ({𝑎, 𝑐}) = 0.05, 𝜑𝐹 ({𝑑, 𝑒}) =
0.175, 𝜑𝐹 ({𝑐, 𝑑, 𝑒}) = 0.025. Therefore, the set of focal elements will be ordered as
follows: A = {{𝑑, 𝑒}, {𝑎}, {𝑎, 𝑐}, {𝑎, 𝑏}, {𝑐, 𝑑, 𝑒}}, A′ = {{𝑑, 𝑒}}, 𝑠 := 2.

Step 2. 𝜑𝐹 ({𝑎}) = 0.105 > ℎ1 ⇒ go to step 3.
Step 3. 𝑑𝐽 ({𝑑, 𝑒}, {𝑎}) ≈ 0.317 > ℎ2 ⇒ A′ := A′ ∪ {{𝑎}} = {{𝑑, 𝑒}, {𝑎}},

𝑠 := 3.
Step 2.1. 𝜑𝐹 ({𝑎, 𝑐}) = 0.05 < ℎ1 ⇒ the end.
As a result, we get a new set of focal elements A′ = {{𝑑, 𝑒}, {𝑎}}.
The general view of the body of evidence with the set of focal elements A′ will

be as follows 𝐹′ (𝑥) = 𝑥𝐹{𝑎} + (1 − 𝑥)𝐹{𝑑,𝑒} , 𝑥 ∈ [0, 1]. The masses of the focal
elements of the body of evidence 𝐹′ can be found from the condition of minimizing
the distance between 𝐹 and 𝐹′. For example, if we use the metric 𝜌𝐽 , then the
solution to the problem 𝜌𝐽 (𝐹, 𝐹′ (𝑥)) → min will be as follows 𝑥0 = 149

240 ≈ 0.62.
Then 𝐹′ = 0.62𝐹{𝑎} + 0.38𝐹{𝑑,𝑒} and 𝜌𝐽 (𝐹, 𝐹′ (𝑥0)) = 0.196. �

3.3 Clustering Based on Conflict Optimization

These methods are based on the assumption of the heterogeneity of those bodies of
evidence that need clustering. This heterogeneity, in particular, may be a consequence
of the aggregation in a given body of evidence 𝐹 = (A, 𝑚) of information from
different, sometimes contradictory, sources. In this case, it is required to find such a
partition (or cover) of the set of focal elementsA into subsets (clusters) {A1, . . . ,A𝑙}
in order to optimize intracluster or intercluster conflict.

If a certain subset A′ ⊆ A of focal elements is selected, then we will further
consider the following local redistribution of masses from A to A′ (and such a
body of evidence will be denoted by 𝐹 (A′) = (A′, 𝑚′)): 𝑚′ (𝐴) = 𝑚(𝐴) ∀𝐴 ∈ A′,
𝑚′ (𝑋) = 1 − ∑

𝐴∈A′ 𝑚(𝐴). In particular, if , then 𝐹 ({𝐴}) = 𝐹
𝑚(𝐴)
𝐴

= 𝑚(𝐴)𝐹𝐴 +
(1 − 𝑚(𝐴))𝐹𝑋 (simple evidence).

Then the following clustering optimization problem can be formulated. It is
required to find such a partition (or cover) of the set of focal elementsA into subsets
(clusters) C = {A1, . . . ,A𝑙} in order to maximize the external conflict between
evidence clusters: 𝐶𝑜𝑛(𝐹 (A1), . . . , 𝐹 (A𝑙)) → max.

In the following algorithm, Algorithm 2 can be used to extract the set from 𝑙

centers of new clusters C = {A1, . . . ,A𝑙}. The remaining focal elements from the
set are redistributed among 𝑙 clusters so that 𝐶𝑜𝑛(𝐹 (A1), . . . , 𝐹 (A𝑙)) → max.

Algorithm 3.
Input data: body of evidence 𝐹 = (A, 𝑚), a selected small setA′ = {𝐴1, . . . , 𝐴𝑙}

of 𝑙 focal elements that will be the centers of new clusters.
Output data: partition (cover) C = {A1, . . . ,A𝑙} of the set of all focal elements

A.
1. Let A (0)

𝑖
= {𝐴𝑖}, 𝑖 = 1, . . . , 𝑙.
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2. Focal elements from A are redistributed among clusters A (0)1 , . . . ,A (0)
𝑙

ac-
cording to the principle of conflict maximization between evidence clusters. The
focal element 𝐵 ∈ A\

{
A (0)1 , . . . ,A (0)

𝑙

}
will be assigned to that cluster A (0)

𝑖
for

which the maximum conflict measure is reached:

A (0)
𝑖

= arg max
𝑗:𝐵∈A (0)

𝑗

𝐶𝑜𝑛

(
𝐹

(
A (0)1

)
, . . . , 𝐹

(
A (0)

𝑗
∪ {𝐵}

)
, . . . , 𝐹

(
A (0)

𝑙

))
.

If equal maximum conflict values are obtained when assigning the element 𝐵 to
several clustersA (0)

𝑗
, 𝑗 ∈ 𝐽, then this element 𝐵 is included in all these clusters, and

the mass value 𝑚(𝐵) is evenly distributed over the updated clusters, i.e. element 𝐵
will be included in each cluster A (0)

𝑗
, 𝑗 ∈ 𝐽 with weight 𝑚(𝐵)/|𝐽 |. �

Example 4. Let’s redistribute the remaining focal elementsA\A′ = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑐, 𝑑, 𝑒}}
in accordance with Algorithm 4 for the body of evidence from Example 1 and the
set of focal elements A′ = {{𝑑, 𝑒}, {𝑎}} selected in Example 3.

Step 1. A (0)1 = {{𝑑, 𝑒}}, A (0)2 = {{𝑎}}.
Step 2. Let 𝐵 = {𝑎, 𝑏}. If 𝐵 ∈ A1, then we obtain:
𝐹

(
{𝐵} ∪ A (0)1

)
= 0.15𝐹{𝑎,𝑏} + 0.25𝐹{𝑑,𝑒} + 0.6𝐹𝑋,

𝐹

(
A (0)2

)
= 0.35𝐹{𝑎} + 0.65𝐹𝑋.

Then 𝐶𝑜𝑛

(
𝐹

(
{𝐵} ∪ A (0)1

)
, 𝐹

(
A (0)2

))
= 0.25 · 0.35 = 0.0875.

If 𝐵 ∈ A2, then we obtain:
𝐹

(
A (0)1

)
= 0.25𝐹{𝑑,𝑒} + 0.75𝐹𝑋,

𝐹

(
{𝐵} ∪ A (0)2

)
= 0.35𝐹{𝑎} + 0.15𝐹{𝑎,𝑏} + 0.5𝐹𝑋

and 𝐶𝑜𝑛

(
𝐹

(
A (0)1

)
, 𝐹

(
{𝐵} ∪ A (0)2

))
= 0.125.

Thus, the element 𝐵 = {𝑎, 𝑏} will be assigned to the cluster A2.
Let 𝐵 = {𝑎, 𝑐}. If 𝐵 ∈ A1, then we obtain:
𝐹

(
{𝐵} ∪ A (0)1

)
= 0.2𝐹{𝑎,𝑐} + 0.25𝐹{𝑑,𝑒} + 0.55𝐹𝑋,

𝐹

(
A (0)2

)
= 0.35𝐹{𝑎} + 0.65𝐹𝑋.

Then 𝐶𝑜𝑛

(
𝐹

(
{𝐵} ∪ A (0)1

)
, 𝐹

(
A (0)2

))
= 0.25 · 0.35 = 0.0875.

If 𝐵 ∈ A2, then we obtain:
𝐹

(
A (0)1

)
= 0.25𝐹{𝑑,𝑒} + 0.75𝐹𝑋,

𝐹

(
{𝐵} ∪ A (0)2

)
= 0.35𝐹{𝑎} + 0.2𝐹{𝑎,𝑐} + 0.45𝐹𝑋

and 𝐶𝑜𝑛

(
𝐹

(
A (0)1

)
, 𝐹

(
{𝐵} ∪ A (0)2

))
= 0.1375.

Thus, the element 𝐵 = {𝑎, 𝑐} will be assigned to the cluster A2.
Let 𝐵 = {𝑐, 𝑑, 𝑒}. If 𝐵 ∈ A1, then we obtain:
𝐹

(
{𝐵} ∪ A (0)1

)
= 0.25𝐹{𝑑,𝑒} + 0.05𝐹{𝑐,𝑑,𝑒} + 0.7𝐹𝑋,

𝐹

(
A (0)2

)
= 0.35𝐹{𝑎} + 0.65𝐹𝑋.
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Then 𝐶𝑜𝑛

(
𝐹

(
{𝐵} ∪ A (0)1

)
, 𝐹

(
A (0)2

))
= 0.105.

If 𝐵 ∈ A2, then we obtain:
𝐹

(
A (0)1

)
= 0.25𝐹{𝑑,𝑒} + 0.75𝐹𝑋,

𝐹

(
{𝐵} ∪ A (0)2

)
= 0.35𝐹{𝑎} + 0.05𝐹{𝑐,𝑑,𝑒} + 0.6𝐹𝑋

and 𝐶𝑜𝑛

(
𝐹

(
A (0)1

)
, 𝐹

(
{𝐵} ∪ A (0)2

))
= 0.0875.

Thus, the element 𝐵 = {𝑎, 𝑐} will be assigned to the cluster A1.
Thus, we get a partition C = {A1,A2}, where A1 = {{𝑑, 𝑒}, {𝑐, 𝑑, 𝑒}}, A2 =

{{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}}. �
Another variant of the optimization problem of evidence body clustering will be

considered below. It is required to find such a partition (or cover) of the set of focal
elementsA into subsets (clusters) C = {A1, . . . ,A𝑙} in order to minimize the total
internal conflict within evidence clusters: Φ =

∑𝑙
𝑖=1 𝐶𝑜𝑛𝑖𝑛 (𝐹 (A𝑖)) → min, where

𝐶𝑜𝑛𝑖𝑛 is a measure of internal conflict. The total external conflict 𝐶𝑜𝑛𝑖𝑛 (𝐹 (A𝑖)) =∑
𝐵∈A𝑖

𝐶𝑜𝑛(𝐹 ({𝐵}, 𝐶𝑖)) between each body of evidence 𝐹 ({𝐵}), 𝐵 ∈ A𝑖 and some
reference evidence (center) 𝐶𝑖 of the 𝑖-th cluster can be considered as an internal
conflict by analogy with the classical k-means algorithm

We will assume that center 𝐶𝑖 has the form

𝐶𝑖 =
∑︁
𝐴∈A𝑖

𝛼𝑖 (𝐴)𝐹𝐴, (1)

where𝛼𝑖 = (𝛼𝑖 (𝐴))𝐴∈A𝑖
∈ 𝑆 |A𝑖 | , 𝑆𝑘 =

{
(𝑡1, ..., 𝑡𝑘) : 𝑡𝑖 ≥ 0, 𝑖 = 1, ..., 𝑘,

∑𝑘
𝑖=1 𝑡𝑖 = 1

}
is an 𝑘-dimensional simplex. The following theorem is true.

Theorem 1 Let 𝑃𝑙A𝑖
(𝐴) =

∑
𝐵∈A𝑖 :
𝐴∩𝐵≠∅

𝑚(𝐵) be the restriction of the plausibility

function to the set A𝑖 . Then the minimum of the functional Φ for a fixed cover
C = {A1, . . . ,A𝑙} will be achieved at

𝛼𝑖 = (𝛼𝑖 (𝐴))𝐴∈A𝑖
∈ 𝑆���A𝑖

���, 𝑖 = 1, . . . , 𝑙, (2)

where A𝑖 =

{
𝐴 ∈ A𝑖 : 𝐴 = arg max

𝐴∈A𝑖

𝑃𝑙A𝑖
(𝐴)

}
.

Then the clustering algorithm (analogous to k-means) will be as follows.

Algorithm 4.
Input data: body of evidence 𝐹 = (A, 𝑚); number of clusters 𝑙; initial centers of

clusters – bodies of evidence 𝐶
(0)
𝑖

, 𝑖 = 1, ..., 𝑙; maximum conflict threshold within
clusters 𝐶𝑜𝑛max ∈ [0, 1]; 𝑠 = 0.

Output data: partition (covering) C = {A1, . . . ,A𝑙} of the set of all focal
elements A.

1. Focal elements are redistributed among clusters according to the principle of
minimizing the conflict between evidence clusters and cluster centers. The focal ele-
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ment 𝐵 ∈ A refers to the clusterA (𝑠)
𝑖

for which is achieved min𝑖𝐶𝑜𝑛
(
𝐹 ({𝐵}), 𝐶 (𝑠)

𝑖

)
≤ 𝐶𝑜𝑛max. If it is true that min𝑖𝐶𝑜𝑛

(
𝐹 ({𝐵}), 𝐶 (𝑠)

𝑖

)
> 𝐶𝑜𝑛max, then the focal el-

ement 𝐵 is assigned as the center of the new cluster. As a result, clusters A (𝑠)
𝑖

,
𝑖 = 1, ..., 𝑙 are obtained.

2. New cluster centers are calculated using formulas (1), (2), 𝑠← 𝑠 + 1.
3. Steps 1 and 2 are repeated until the clusters (or their centers) stabilize. �

Corollary 1. Algorithm 4 converges in a finite number of steps.

Example 5. Algorithm 4 will give the following result for the evidence body from
Example 1. Let 𝑙 = 2 be set, and the initial centers of the clusters coincide with the
focal elements identified by Algorithm 2: 𝐶 (0)1 = 𝐹 ({𝑑, 𝑒}) = 0.25𝐹{𝑑,𝑒} + 0.75𝐹𝑋,
𝐶
(0)
2 = 𝐹 ({𝑎}) = 0.35𝐹{𝑎} + 0.65𝐹𝑋; 𝐶𝑜𝑛max = 1; 𝑠 = 0.
Step 1.1. We have
𝐶𝑜𝑛

(
𝐹 ({𝑎}), 𝐶 (0)1

)
= 0.0875, 𝐶𝑜𝑛

(
𝐹 ({𝑎, 𝑏}), 𝐶 (0)1

)
= 0.0375,

𝐶𝑜𝑛

(
𝐹 ({𝑎, 𝑐}), 𝐶 (0)1

)
= 0.05,

𝐶𝑜𝑛

(
𝐹 ({𝑑, 𝑒}), 𝐶 (0)1

)
= 𝐶𝑜𝑛

(
𝐹 ({𝑐, 𝑑, 𝑒}), 𝐶 (0)1

)
= 0,

𝐶𝑜𝑛

(
𝐹 ({𝑎}), 𝐶 (0)2

)
= 𝐶𝑜𝑛

(
𝐹 ({𝑎, 𝑏}), 𝐶 (0)2

)
= 𝐶𝑜𝑛

(
𝐹 ({𝑎, 𝑐}), 𝐶 (0)2

)
= 0,

𝐶𝑜𝑛

(
𝐹 ({𝑑, 𝑒}), 𝐶 (0)2

)
= 0.0875, 𝐶𝑜𝑛

(
𝐹 ({𝑐, 𝑑, 𝑒}), 𝐶 (0)2

)
= 0.0175

Then the initial clustering will have the form according to the principle of
minimizing the conflict between evidence clusters and cluster centers: A (0)1 =

{{𝑑, 𝑒}, {𝑐, 𝑑, 𝑒}}, A (0)2 = {{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}}.
Step 1.2. New cluster centers are calculated using formulas (1), (2):
𝑃𝑙A (0)1

({𝑑, 𝑒}) = 𝑃𝑙A (0)1
({𝑐, 𝑑, 𝑒}) = 0.3,

𝑃𝑙A (0)2
({𝑎}) = 𝑃𝑙A (0)2

({𝑎, 𝑏}) = 𝑃𝑙A (0)2
({𝑎, 𝑐}) = 0.7.

Therefore
𝐶
(1)
1 = 𝛼𝐹{𝑑,𝑒} + (1 − 𝛼)𝐹{𝑐,𝑑,𝑒} , 𝐶 (1)2 = 𝛽𝐹{𝑎} + 𝛾𝐹{𝑎,𝑏} + (1 − 𝛽 − 𝛾)𝐹{𝑎,𝑐} ,

where 𝛼, 𝛽, 𝛾 ∈ [0, 1], 𝛽 + 𝛾 ≤ 1.
Step 2.1. Focal elements are redistributed:
𝐶𝑜𝑛

(
𝐹 ({𝑎}), 𝐶 (1)1

)
= 0.35, 𝐶𝑜𝑛

(
𝐹 ({𝑎, 𝑏}), 𝐶 (1)1

)
= 0.15,

𝐶𝑜𝑛

(
𝐹 ({𝑎, 𝑐}), 𝐶 (1)1

)
= 0.2𝛼,

𝐶𝑜𝑛

(
𝐹 ({𝑑, 𝑒}), 𝐶 (1)1

)
= 𝐶𝑜𝑛

(
𝐹 ({𝑐, 𝑑, 𝑒}), 𝐶 (1)1

)
= 0,

𝐶𝑜𝑛

(
𝐹 ({𝑎}), 𝐶 (1)2

)
= 𝐶𝑜𝑛

(
𝐹 ({𝑎, 𝑏}), 𝐶 (1)2

)
= 𝐶𝑜𝑛

(
𝐹 ({𝑎, 𝑐}), 𝐶 (1)2

)
= 0,

𝐶𝑜𝑛

(
𝐹 ({𝑐, 𝑑, 𝑒}), 𝐶 (1)2

)
= 0.05(𝛽 + 𝛾), 𝐶𝑜𝑛

(
𝐹 ({𝑑, 𝑒}), 𝐶 (1)2

)
= 0.25.

Then A (1)1 = {{𝑑, 𝑒}, {𝑐, 𝑑, 𝑒}}, A (1)2 = {{𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}}. The clusters have
stabilized. �
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Remark 1. Since cluster centers may depend on parameters 𝛼 = (𝛼(𝐴))
𝐴∈A𝑖

∈
𝑆���A𝑖

��� (see formula (2)), additional procedures for choosing these parameters can be

used in the algorithm, such as:
1) cover minimization C = {A1, . . . ,A𝑙}. For example,

∑𝑙
𝑖=1 |A𝑖 | → min.

2) minimizing the uncertainty of evidence bodies 𝐶𝑖 , 𝑖 = 1, ..., 𝑙. For example,
(measure of imprecision [5]) 𝐻 (𝐶𝑖) =

∑
𝐴∈A𝑖

𝛼𝑖 (𝐴) |𝐴| → min.
3) minimizing the distance between the centers of clusters and the original body

of evidence with respect to some metric 𝜌: 𝜌(𝐶𝑖 , 𝐹) → min, 𝑖 = 1, ..., 𝑙; etc.

Remark 2. Clustering a body of evidence 𝐹 = (A, 𝑚) can be used to evaluate
its internal conflict. If C = {A1, . . . ,A𝑙} is a cover (or partition) of the set of focal
elements A, then the internal conflict can be estimated by the formula 𝐶𝑜𝑛𝑖𝑛 (𝐹) =
𝐶𝑜𝑛(𝐹 (A1), . . . , 𝐹 (A𝑙)). So, the measure of internal conflict of the body of evi-
dence from Example 1 using the clustering of Example 5 (or Example 4) will be
equal to 𝐶𝑜𝑛𝑖𝑛 (𝐹) = 𝐶𝑜𝑛(𝐹 ({𝑑, 𝑒}, {𝑐, 𝑑, 𝑒}1), 𝐹 ({𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐})) = 0.2.

4 Conclusion

The article discusses the main known and currently being developed areas of evidence
body clustering. In particular, the following classes of algorithms are considered:
a) hierarchical clustering algorithms; b) clustering algorithms based on the density
function; c) clustering algorithms based on conflict optimization.

On the one hand, many of the considered algorithms are analogues of the corre-
sponding algorithms for ”point” data. On the other hand, the dual frequency-multiple
nature of the bodies of evidence imposes peculiar restrictions, the need to use “one’s
own” measures of proximity (for example, based on measures of conflict), etc. Some
algorithms (for example, hierarchical ones) are explained by the peculiar goals of
such clustering (for example, generating generalizations and specializations of the
body of evidence).

All these features leave a lot of room for creativity in the development of algo-
rithms for clustering bodies of evidence.
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