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Abstract

The article is devoted to solving the problem of choosing sources
of prognostic expert information for aggregation and aggregation itself
in the framework of evidence theory. A procedure for optimal “blurring”
of point values and construction of evidence bodies based on the SVR re-
gression method is proposed. A procedure for choosing predictions (bodies
of evidence) for combination based on minimizing the measure of contra-
diction between bodies of evidence is proposed. The applicability of these
procedures is demonstrated by a numerical example of selection for ag-
gregation of forecasts of GDP growth.

Keywords. Expert Forecasts, Forecast Aggregation, Evidence The-
ory.

1 Introduction

Expert evaluation and forecasting is widely used in the development of pro-
grams for the socio-economic development of regions, making managerial deci-
sions, decision making in the financial market, counteracting natural and man-
made threats, etc. Aggregation of predictive information obtained from different
sources is one of the important methods of expert evaluation.

There are a number of methods and algorithms for aggregation. For example,
the Hedge [7] algorithm, which uses the multiplicative weights update method
of Expert Advisors, is popular. Consensus forecasting as a method of averaging
with some weights or using a median is widely developed in macroeconomic
forecasting. However, a number of studies have shown that aggregated forecasts
should be treated with caution. For example, it was argued in [9] that it is
inefficient to use the mean for forecast aggregation. This inefficiency increases
as the number of forecasts in the aggregation increases. Some procedures for
selecting “good” forecasts for aggregation were also proposed there.

Therefore, both the problem of developing new aggregation methods and
the problem of choosing “good” forecasts for aggregation, taking into account
the historical data of forecasting sources, their contradictoriness remain relevant.
It is convenient to model contradictoriness, uncertainty, reliability of information
sources in the framework of the theory of evidence [4, 13]. Evidence theory
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aggregation methods were used in [15] to combine analysts’ predictions about
the most promising sectors of the stock market in the medium term. Some
strategies for aggregating investment bank forecasts about the future value of
securities were considered in [10] within the framework of evidence theory. The
application of evidence theory to estimating coherence of analyst’s forecasts
about the cost of shares of Russian companies was studied in [2].

This article is devoted to the development of one method for constructing
bodies of evidence of predictive expert estimates, taking into account histori-
cal information about forecasts, as well as aggregating these estimates in the
framework of the theory of evidence.

2 Some Information from the Theory of Evi-
dence

We will consider bodies of evidence only on the real axis R. Therefore, we will
give the necessary information from the theory of evidence [4, 13] in relation
to this case. Let X be some interval of the real axis R, AX be the set of all
segments on X, and A be a finite subset of the set AX . Some non-negative
set function m : AX → [0, 1] is defined on AX and satisfies the normalization
condition

∑
A∈Am(A) = 1. Without loss of generality, we will assume that

m(A) > 0 ⇔ A ∈ A. In this case, A is called the set of focal elements,
m is the mass function, and the pair F = (A,m) is the body of evidence
on X. The evidence body provides information about the degree of belief that
the true alternative belongs to any focal element. Special cases of evidence
bodies are: 1) categorical evidence FA = (A, 1); 2) vacuous evidence FX =
(X, 1). An arbitrary body of evidence F = (A,m) can be represented as F =∑
A∈Am(A)FA. A body of evidence of the form FmA = mFA + (1 − m)FX ,

m ∈ [0, 1] is called simple.
In the theory of evidence, in particular, the problems of analyzing the contra-

diction of information from different sources [11] and aggregating such informa-
tion are considered. Let two independent sources of information be described
by two bodies of evidence F1 = (A1,m1) and F2 = (A2,m2). To assess the
contradiction (conflict) between the evidence bodies F1 and F2, we will use the
measure

Con(F1, F2) =
∑

A∈A1,B∈A2

γ(A,B)m1(A)m2(B), (1)

where γ(A,B) = 1− s(A,B) and s(A,B) is the similarity coefficient satisfying
the conditions: 1) 0 ≤ s(A,B) ≤ 1; 2) s(A,B) = 0, if A∩B = ∅; 3) s(A,A) = 1.
Jaccard index s(A,B) = L (A ∩B) /L(A ∪B) is an example of such a coefficient
which we will use below. Here L(C) is the length of the segment C ⊆ R (the
sum of the lengths if C is the union of several segments).

The conflict measure (1) is associated with the following conjunctive rule for
aggregating evidence bodies F1⊗F2 = (A,m), whereA = {C = A ∩B : A ∈ A1, B ∈ A2}

m(C) =
1

K

∑
A∩B=C

s(A,B)m1(A)m2(B), (2)

if K = 1 − Con(F1, F2) 6= 0. This is the so-called Zhang’s center combination
rule [16].
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3 Finding Evidence Bodies of Experts’ Forecasts

Let x (t) be some time dependent indicator. For example, it can be a macroeco-
nomic indicator (GDP, oil cost, inflation) or the area of forest fires in the region.
Let’s assume that some expert at the time ti−1 made a prediction fi about the
values of this indicator at the time ti and xi = x (ti) is the real value of the
indicator at the moment of time ti, i = 1, . . . , N . As a result, we have a sample
of predictive values {fi}Ni=1 and a sample of real values {xi}Ni=1 of the indicator
for N previous time points. We consider that t1 < · · · < tN .

Let’s assume that the expert at the time tN made a prediction fN+1 about
the values of the indicator at the time tN+1. It is necessary to form a body
of evidence that would reflect the information about the forecast, taking into
account the historical information about the previous forecasts of this expert.

We will find the body of evidence in the form of a simple belief structure

Fm[l,r] = mF[l,r] + (1−m)FX , (3)

where [l, r] is the interval containing the true value of the indicator with a degree
of belief m ∈ [0, 1], X is the set all possible values of the indicator.

The interval [l, r] will be obtained from the forecast value fN+1 by its “blur”
taking into account historical information about previous forecasts. The degree
of belief m will be obtained from the estimate of the reliability of the forecast.

3.1 Statistics of Biases of Expert Estimates

Knowing the samples {fi}Ni=1 and {xi}Ni=1 you can get the sample ∆ = {δi}Ni=1

absolute biases of forecast values

δi = xi − fi, i = 1, . . . , N

for dimensionless indicators (percentage of GDP growth, percentage of inflation,

etc.) or a sample of relative biases δi =
xi − fi
fi

, i = 1, . . . , N .

Below we consider only the case of dimensionless indicators and absolute
biases. The case of relative biases is considered similarly.

In addition, we will consider the sample mean bias δ and the sample mean
square deviation s of the bias:

δ =
1

N

N∑
i=1

δi, s =

√√√√ 1

N − 1

N∑
i=1

(
δi − δ

)2
.

3.2 Formation of Focal Elements and Estimation of their
Masses

One can construct an appropriate confidence interval using the Student’s dis-
tribution for the “blur” point values {fi}Ni=1.

But below we will consider another approach, which can be called optimiza-
tion. We will find segments [li, ri], i = 1, . . . , N in the form{

li = fi + δ − as,

ri = fi + δ + bs,
(4)

3



where the values a, b ≥ 0 are found from the condition

xi ∈ [li, ri] ⇔ x̃i = xi − fi − δ ∈ [−as, bs] , i = 1, . . . , N (5)

and conditions for minimizing a certain criterion. For example, the length of
the segment [li, ri] can be chosen as a criterion (all segments are equal in length)

L (a, b) = ri − li = (a+ b) s→ min. (6)

It is easy to see that the solution of the problem (5), (6) will be the bound-
aries

a0 = max

{
0, max

1≤i≤N

{
δ − δi
s

}}
, b0 = max

{
0, max

1≤i≤N

{
δi − δ
s

}}
. (7)

Note that the condition (5) in the optimization approach is rigid. Therefore,
such a blur method will be highly unstable to data outliers. The robustness
of the optimization algorithm can be achieved by using the “soft” condition
instead of the condition (5)

li − ξ−i ≤ xi ≤ ri + ξ+i , i = 1, . . . , N, (8)

where the auxiliary variables ξ−i ≥ 0, ξ+i ≥ 0 have the meaning of the values
that go beyond the boundaries of the interval [li, ri], i = 1, . . . , N .

Then the problem of “soft” optimization of finding the boundaries of blur
intervals [li, ri], i = 1, . . . , N can be formulated as follows. It is necessary to
find the values a, b, ξ− = (ξ−i ), ξ+ = (ξ+i ) that would satisfy the conditions (
4), (8) and minimize the functional

G
(
a, b, ξ−, ξ+

)
= L (a, b) + c

N∑
i=1

(
ξ−i + ξ+i

)
, (9)

where the summand
∑N
i=1

(
ξ−i + ξ+i

)
characterizes the penalty for the total

error of forecast values going beyond the intervals [li, ri], i = 1, . . . , N , c ≥ 0
is a parameter that regulates the relationship between the minimization of the
length of the segment L (a, b) and the penalty for not falling into this segment.

Note that this “soft” optimization method is similar to the well-known SVM
regression method [5].

The mass function should reflect the degree of belonging of the true value to
the forecast interval. Therefore, we will find the mass function as the relative
frequency of hitting the real values xi of the indicator in the intervals [li, ri],
i = 1, . . . , N :

m =
|i : xi ∈ [li, ri], i = 1, . . . , N |

N
=
|i : x̃i ∈ [−as, bs], i = 1, . . . , N |

N
. (10)

3.3 Optimization of the Procedure for Finding the Body
of Evidence

We will get a body of evidence of the form (3) as a result of the “blur” predictive
value of fN+1 and the mass estimate. In this case, the body of evidence F will
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depend on only one parameter c ≥ 0: F = F (c), which can be estimated by
introducing additional restrictions. Let us consider the minimization of the
imprecision measure of information given by the body of evidence F as such a
constraint. There are different ways of estimating the imprecision of evidence
bodies (see, for example, [1]). Below we will use the generalized cardinality as
a imprecision measure, which was introduced in [6]. This measure was defined
as H(F ) =

∑
A∈Am(A) |A| for the evidence body F = (A,m) on a finite base

set X. We will consider the length of the focal element-segment L(A) instead
of the cardinality |A| on the base set X ⊆ R.

The length of the optimal interval L(c) = (a+ b) s does not decrease as
the parameter c ≥ 0 increases, which follows from (9). In particular, L(c) →
Lmax = (a0 + b0) s as c→∞ (”hard” optimization) and L(c)→ 0 for c→ 0.

If we assume that the sample points {x̃i} are distributed according to the
normal law N

(
δ, s2

)
, then

m ≈ P {θ ∈ [−as, bs]} = Φ(a) + Φ(b),

where Φ(x) = 1√
2π

∫ x
0
e−

t2

2 dt is the Laplace function. Then the imprecision

measure H(F ) will be approximately equal to

H(F ) = (Φ(a) + Φ(b)) (a+ b) s+ (1− Φ(a)− Φ(b))L(X).

It can be shown that this function achieves a global minimum at the point
(aopt, bopt), where a = aopt = bopt is the only root of the equation

2Φ(a)s = Φ′(a) (L(X)− 2as) , if 0 ≤ 2as ≤ L(X).

The minimum point (aopt, bopt) will correspond to the optimal value of the
parameter copt = L−1((aopt + bopt)s). In practice, the optimal value of copt can
be found by constructing a graph of the H(F (c)) dependence.

4 Selection and Aggregation of Expert Assess-
ments

Assume that there are M predictions f
(k)
N+1, k = 1, . . . ,M about the values of

the considered indicator at the time tN+1 and historical information about
past forecasts obtained from various independent sources. Let’s find evidence
bodies Fk, k = 1, . . . ,M about a new forecast for each source based on this in-
formation. Multiple evidence bodies are required to be selected for aggregation.
The analysis of information sources for conflict is one of the main methods for
deciding about the choice of sources for aggregation.

General Scheme for Aggregating Expert Forecasts

1. Find the sample mean biases δ
(k)

, and the sample mean square deviation
s(k) (see subsection 3.1) , the parameters of the boundaries of the optimal

intervals a
(k)
opt and b

(k)
opt (i. e. values of a and b at the optimal value of copt),

mass functions mk (see subsections 3.2 and 3.3) for each k-th source of
information k = 1, . . . ,M .
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2. Find simple evidence bodies of a new prediction of the form Fk = Fmk[lk,rk]

for each k-th predictive value f
(k)
N+1, k = 1, . . . ,M , where lk = f

(k)
N+1 + δ

(k) − a(k)opts
(k),

rk = f
(k)
N+1 + δ

(k)
+ b

(k)
opts

(k),

X = con
{⋃M

k=0 [lk, rk]
}

, con is the minimal convex hull.

3. Find the values of pairwise conflicts Con (Fk, Fp), k = 1, . . . ,M − 1, p =
k + 1, . . . ,M by the formula (1).

4. Find the aggregation of a pair of evidence bodies with minimal conflict
into a new evidence body using the formula (2).

5 Numerical Example

Data description. Let us apply the above-described method of forming bodies
of evidence and selecting sources of information for aggregation using the exam-
ple of forecasts on the growth rate of Russia’s GDP in 2010-2019. The sources
of forecasts are [3] : 1) The International Monetary Fund (IMF); 2) The Centre
of Development Institute – HSE University (HSE); 3) The Ministry of Economic
Development of the Russian Federation (MED). Forecast and real values of the
GDP growth rate are given in Table. 1, and the corresponding graphs are shown
in fig. 1.

Table 1: Russia’s GDP Growth Rate and Forecasts in 2010-2019.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

GDN growth 4,5 4,3 4,0 1,8 0,7 -2,0 0,2 1,8 2,8 2,2
IMF 1,5 4,8 3,5 3,8 2,0 0,5 -1,0 1,0 1,6 1,6
HSE 2,6 4,0 3,5 3,2 2,1 0,2 -0,7 1,0 1,7 1,4
MED 1,6 4,2 3,4 3,7 3,0 1,2 -0,6 1,0 2,1 1,3

Figure 1: Real GDP and forecasts, % growth
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Construction of bodies of evidence-forecasts. The bodies of evidence
for the 2019 forecasts are found from the 2010–2018 data and using the method-
ology described in the section 3.

The segment X = [−3, 5; 3, 5] is selected as the base interval at the “blur”
stage. This segment contains all {x̃i} forecast points (after removal of the trend
and average bias) of all sources.

Graphs of dependences of the imprecision measure H(F ) of forecasts on the
values of the parameter c for different sources are shown in fig. 2.

3
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Figure 2: Dependences of the imprecision measure H(F ) on the parameter c

The results of “hard” and “soft” optimization “blur” point forecasts for 2019
and mass estimation are given in Table. 2. Here [−a0s, b0s] and [−aopts, bopts]
are the “hard” and “soft” segments optimal blurs of the point value x̃N (after
removal of the trend and average bias), respectively.

Table 2: ”Blur” results of 2019 point forecasts and mass estimates.

δ s −a0s b0s −aopts bopts m H copt
IMF 0,05 1,16 –2,53 2,95 –2,1 1,16 0,78 4,08 0, 4÷ 0, 6
HSE 0,06 1,3 –2,24 1,84 –1,51 1,04 0,78 3,54 0, 4÷ 0, 7
MED –0,16 1,81 –3,01 3,06 –2,11 1,0 0,78 3,96 0, 3÷ 0, 5

Thus, we have three predictions in the form of bodies of evidence:

F1 = 0, 78F[−0,45;2,8] + 0, 12FX , F2 = 0, 78F[−0,05;2,5] + 0, 12FX ,

F3 = 0, 78F[−0,96;2,12] + 0, 12FX ,

which we will now consider on the base set X = [−1; 3].

Forecast aggregation. Let us apply the general scheme of forecast ag-
gregation. The pairwise conflict matrix Con = {Con (Fk, Fp)} will be equal
to

Con =

 0, 064 0, 226 0, 265
0, 226 0, 125 0, 329
0, 265 0, 329 0, 079

 .

7



The smallest conflict is between the IMF and HSE forecasts. But we find the
aggregation of all three pairs. We’ll get (1 – IMF, 2 – HSE, 3 – DEM):

F12 = 0, 76F[−0,05;2,5] + 0, 18F[−0,45;2,8] + 0, 06FX ,

F13 = 0, 56F[−0,45;2,12] + 0, 19F[−0,45;2,8] + 0, 18F[−0,96;2,12] + 0, 07FX ,

F23 = 0, 56F[−0,05;2,12] + 0, 16F[−0,05;2,5] + 0, 2F[−0,96;2,12] + 0, 08FX .

Let’s find the change in the distance between the actual value of the indicator
and the predicted values before aggregation and after aggregation. To do this,
we will use the conflict measure Con(Fτ , F ) between the body of evidence-
prediction F = (B,m) and the categorical evidence Fτ , which equals the τ−blur
of the real value xN+1 (i.e. Fτ = FUτ (xN+1)), where Uτ (x) = [x− τ, x+ τ ], τ > 0
is some parameter. We have

Con(Fτ , F ) = 1−
∑
B∈B

s (Uτ (xN+1), B)m(B).

If xN+1 /∈ ∂B ∀B ∈ B and τ > 0 such that Uτ (xN+1) j B, if xN+1 ∈ B, then

Con(FUτ (xN+1), F ) = 1− 2τPF (xN+1),

where PF (x) =
∑
B∈B:x∈B

m(B)

| B |
=

1

2τ

(
1− Con(FUτ (x), F )

)
is the consistency

density of predictive evidence and real value evidence. Note that this value
has the meaning of the so-called pignistic probability [14] for a finite set X.
Therefore, the value PF (xN+1), which is independent of “blur” τ > 0, will be
used as the degree of closeness of the evidence-forecast body F = (B,m) to the
real value of xN+1.

In addition, we find the change in the imprecision measure H for estimating
the quality of aggregation.

The values of PF (xN+1) and H(F ) for all evidence bodies F1, F2, F3 and
their aggregations F1⊗F2, F1⊗F3, F2⊗F3 are given in the Table 3.

Table 3: Values of consistency density and imprecision measure.

F1 F2 F3 F1⊗F2 F1⊗F3 F2⊗F3

PF (xN+1) 0,294 0,361 0,055 0,368 0,075 0,083
H(F ) 3,42 2,87 3,28 2,72 2,89 2,54

It is easy to see that after aggregation, the proximity of the forecast to the
exact value slightly increased relative to the PF measure and is achieved by
combining the least conflicting pair of evidence bodies F1 and F2. In addition,
the accuracy of forecasts after combining all pairs also increased.

6 Conclusion

The following results were obtained in the article:

� a procedure for optimal “blurring” of point values and construction of
evidence bodies based on the SVR regression method is proposed, taking
into account the historical prognostic information of the source;
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� a procedure for finding the optimal values of the parameters of the ¡¡blur¿¿
procedure based on minimizing the measure of inaccuracy of the resulting
body of evidence is proposed;

� a procedure for selecting predictions (evidence bodies) for combination
based on minimizing the conflict measure between evidence bodies is pro-
posed;

� the applicability of these procedures is demonstrated by the example of
selection for aggregation of GDP growth forecasts.
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