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Abstract. Two algorithms for the body of evidence clustering are de-
veloped and studied in this paper. The first algorithm is based on the
use of the distribution density function of conflicting focal elements of
the body of evidence. The second algorithm is similar to the k-means
algorithm, but it uses the external conflict measure instead of the met-
ric. It is shown that cluster decomposition can be used to evaluate the
internal conflict of the body of evidence.

Keywords: Body of evidence · Measure of conflict · Decomposition of
evidence.

1 Introduction

The body of evidence may have a complex structure in applied problems of the
theory of belief functions. For example, it may consist of many focal elements
with a complex intersection structure. Such evidence is difficult to interpret. In
addition, since many of the operations of the theory of belief functions (for ex-
ample, combined rules) are computationally difficult, applying these operations
to evidence bodies with many focal elements also becomes computationally dif-
ficult.

Therefore, the following tasks are relevant: 1) analysis of the structure of
the set of focal elements A of the body of evidence F = (A,m) (m is the mass
function); 2) finding an enlarged (simplified) structure of the set of focal elements

Ã; 3) redistribution of masses of focal elements of the set A to focal elements

from Ã. As a result, we obtain a new mass function m̃, etc.
The paper proposes to solve these problems based on the clustering of a set

of focal elements. We suggest that the complex structure of the body of evidence
may be the result of aggregation of heterogeneous information. This information,
which is obtained from various sources, may be contradictory (conflict). There-
fore, the general approach to clustering the body of evidence can be as follows.
The inconsistency should be minimal within clusters and maximal between clus-
ters in the resulting partition into clusters of the original set of focal elements.
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This approach is similar to the compactness principle in cluster analysis. Dis-
tances should be minimal between elements of the same cluster and maximal
between clusters. But in this article, we will use the measure of external conflict
(contradiction) between evidence bodies [8] as a proximity functional between
clusters instead of a metric, and/or the measure of internal conflict of evidence
bodies [9] as the proximity functional of focal elements within a cluster.

The idea of approximating the body of evidence F by a simpler body of
evidence F̃ using hierarchical clustering of focal elements was proposed in [6,
10] and developed in [5]. Clustering was carried out by union and intersection of
’close’ focal elements and summing their masses. A clustering algorithm based
on the concept of conflict density was proposed in [2].

In the general case, we get a partition (or coverage) {A1, . . . ,Al} of the set
of focal elements A as a result of its clustering, which can be associated with
the set of bodies of evidence {F1, ..., Fl}, where Fi = (Ai,mi), i = 1, ..., l.

In addition to revealing the structure and simplifying the body of evidence,
clustering can be used to evaluate the internal conflict Conin(F ) of the original
body of evidence F = (A,m) according to the formula Conin(F ) = Con(F1, ..., Fl),
where Con is a measure of external conflict.

Two algorithms for clustering the body of evidence are proposed in the ar-
ticle. The first algorithm is based on the use of the conflict distribution density
function. The second algorithm is analogous to the k-means algorithm, but in-
stead of a metric, a measure of external conflict is used.

2 Basic Concepts of the Evidence Theory

Let us briefly recall the basic concepts of evidence theory [4, 12]. Let X be a
finite set, 2X be the set of all subsets on X. A body of evidence on the set X
is a pair F = (A,m), where A is a set of non-empty subsets (focal elements)
from the X, m : 2X → [0, 1] is a mass function that satisfies the conditions:
m(A) > 0 ⇔ A ∈ A,

∑
Am(A) = 1. Let F(X) be the set of all bodies of

evidence on the X.
Special cases of bodies of evidence are categorical evidence FA = ({A}, 1),

vacuous evidence FX = ({X}, 1), simple evidence FαA = αFA + (1 − α)FX ,
α ∈ [0, 1]. An arbitrary body of evidence F = (A,m) can be represented in the
form F =

∑
A∈Am(A)FA.

Some set functions are associated with the body of evidence F = (A,m): be-
lief functionBel(A) =

∑
B⊆Am(B), plausibility function Pl(A) = 1−Bel(¬A) =∑

A∩B 6=∅m(B), etc. These functions uniquely define the entire body of evidence.
Inconsistency (conflict) is an important joint characteristic of two or more

bodies of evidence. The external conflict of two evidence bodies F1 = (A1,m1)
and F2 = (A2,m2) is some measure Con(F1, F2) : F(X) × F(X) → [0, 1],
which takes on a greater value in the case of the existence of a large num-
ber of pairs (A,B) with large masses of non-overlapping focal elements of two
bodies of evidence: A ∈ A1, B ∈ A2, A ∩ B = ∅. An overview of articles on
external conflict measures can be found in [8]. Below we will use the canonical
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measure of external conflict associated with the Dempster rule: Con(F1, F2) =∑
A∩B=∅m1(A)m2(B).
Along with the measure of external conflict between several bodies of evi-

dence, the inconsistency of information provided by one body of evidence is also
considered. An evidence body that results from combining multiple bodies of
conflicting evidence bodies can have a large internal conflict. The inconsistency
of the body of evidence F = (A,m) is evaluated using some internal conflict
measure Conin(F ) : F(X)→ [0, 1] [9].

3 Evidence Clustering

3.1 Restriction and Extension of the Mass Function

Let F = (A,m) be the body of evidence, where A is the set of focal elements of
this evidence. Let’s consider some subset A′ ⊆ A. The set function m′ : 2X →
[0, 1], m′(A) = m(A) ∀ A ∈ A′ and m′(A) = 0 ∀ A /∈ A′ is called the restriction
of the mass function m to the set A′ ⊆ A.

In the general case, the mass function m′ does not satisfy the normalization
condition

∑
Am

′(A) = 1. Therefore, the pair (A′,m′) does not define any body
of evidence. It is necessary to extend the set function m′ to the mass function
m̃′ so that this extension reflects the distribution of the m′.

This can be done in many ways. Examples of some extensions:
1) proportional extension: m̃′(A) = m′(A)

/∑
B∈A′ m′(B) ∀ A ∈ A′.

2) vacuous extension: m̃′(A) = m′(A) , m̃′(X) = m′(X) + 1−
∑
B∈A′ m′(B).

Note that various extensions of the set function to the mass function of some
body of evidence are used in the combination rules. For example, proportional
extension is used in Dempster’s rule [4], and inconsistent continuation is used in
Yager’s rule [13].

If a certain rule for the extension of the mass function is fixed, then the new
body of evidence F ′ = (A′, m̃′) will be uniquely determined by the original body
of evidence F = (A,m) by the set A′ ⊆ A. Therefore, such a body of evidence
will be denoted as F (A′) = (A′, m̃′).

In particular, if the vacuous extension is used, then the body of evidence

F ({A}) = F
m(A)
A = m(A)FA + (1−m(A))FX will be simple for any set A ∈ A.

3.2 Statement of the Problem of Clustering the Body of Evidence
Based on Conflict Optimization

Various formulations of the clustering problem are possible. Let’s note some of
them. Suppose we have a body of evidence F = (A,m). It is required to find a
partition of the set of all focal elements A into subsets {A1, . . . ,Al} such that:

1) maximize external conflict between bodies of evidence (clusters):
Con(F (A1), . . . , F (Al))→ max, where Con is a measure of external conflict;

2) minimize total internal conflict within clusters∑l
i=1 Conin(F (Ai))→ min, where Conin is a measure of internal conflict;
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3) minimize the overall conflict between the centers of clusters and the bodies
of evidence formed by the focal elements of these clusters∑l
i=1

∑
B∈Ai

Con (F ({B}), Ci) → min, where Ci is the reference body of evi-
dence corresponding to the i-th cluster, i = 1, ..., l.

In a more general setting, it is required to find a covering of the set of focal
elements A instead of a partition.

3.3 Cluster Decomposition of Evidence Based on the Conflict
Density Function

Density Function. The concept of conflict density was introduced in [2]. Let
F = (A,m) be the body of evidence. A mapping ψF : 2X → [0, 1] is called a
conflict density function of the body of evidence F if it satisfies the following
conditions:

1) ψF (A) = 0, if B ∩A 6= ∅ ∀B ∈ A;
2) ψF (A) = 1, if B ∩A = ∅ ∀B ∈ A;
3) ψαF1+βF2 = αψF1 +βψF2 ∀F1, F2 ∈ F(X), where α+β = 1, α ≥ 0, β ≥ 0.
It is easy to show [2] that a set function satisfying conditions 1)-3) is equal to

ψF (A) =
∑
B:A∩B=∅m(B) = 1− Pl(A). Note that the function was considered

in [11] and was called the inconsistency function.
The main idea of the clustering algorithm for a set of focal elements A based

on the conflict density function is that the ’centers’ of the clusters should have
a large value of the conflict density function.

We will use the function ϕF (A) = m(A)ψF (A), A ∈ A instead of the density
function ψF itself. The function ϕF will take on large values for those focal
elements that have not only a high density, but also a large mass.

Algorithm for Cluster Decomposition of Evidence Based on Conflict
Density Functions. This algorithm will consist of the following steps.

Algorithm 1.
1. Let’s calculate the values of the set function ϕF (A), A ∈ A. If we have

ϕF (A) = 0 for all A ∈ A, then we stop the algorithm. In this case, we have
non-conflict body of evidence A: B ∩A 6= ∅ ∀A,B ∈ A. Therefore, there will be
no clustering.

2. If there are A ∈ A for which ϕF (A) > 0, then we arrange such focal
elements in descending order of function values ϕF : ϕF (A1) ≥ ϕF (A2) ≥ ....
We choose the number of clusters l by analyzing the rate of decrease of the

sequence {ϕF (Ai)}. Selected focal elements will be initial clusters: A(0)
i = {Ai},

i = 1, ..., l.

3. The remaining focal elements are redistributed among clustersA(0)
1 , ...,A(0)

l

according to the principle of maximizing the conflict between evidence clusters.

We will assign a focal element B ∈ A\
{
A(0)

1 , ...,A(0)
l

}
to the cluster A(0)

i for

which the maximum conflict measure is reached:

A(0)
i = arg max

j:B∈A(0)
j

Con
(
F
(
A(0)

1

)
, ..., F

(
A(0)
j ∪ {B}

)
, ..., F

(
A(0)
l

))
.
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If equal maximum values of the conflict are obtained by assigning B to several

clusters A(0)
j , j ∈ J , then we include B in all these clusters, and the mass value

m(B) is evenly distributed among the updated clusters. In this case, B will be
included in each cluster with weight m(B)/|J |. As a result, we obtain a coverage
{A1, . . . ,Al} of the set of all focal elements A. The values of the mass function
mi on the Ai, i = 1, ..., l are calculated using the given restriction and extension
procedures.

Example 1. Let we have X = {1, 2, 3} and the body of evidence F = 0.3F{1}+
0.2F{2}+0.3F{1,3}+0.2F{2,3} is given on X, i.e. A={{1},{2},{1, 3}, {2, 3}}.

Step 1. Find the values of the function ϕF : ϕF ({1}) = ϕF ({2}) = 0.12,
ϕF ({1, 3}, {2, 3}) = 0.06.

Step 2. Let us assign the number of clusters l=2 and A(0)
1 ={{1}}, A(0)

2 ={{2}}.
Step 3. Let’s distribute the remaining two focal elements among clusters.

We have for B={1, 3}. If B ∈A1, then F
(
{B}∪A(0)

1

)
= 0.3F{1}+0.3F{1,3}+

0.4FX , F
(
A(0)

2

)
=0.2F{2}+0.8FX . Consequently Con

(
F
(
{B}∪A(0)

1

)
, F
(
A(0)

2

))
=

0.12. But if B ∈ A2, then F
(
A(0)

1

)
=0.3F{1}+ 0.7FX , F

(
{B}∪A(0)

2

)
=0.2F{2}+

0.3F{1,3} + 0.5FX and Con
(
F
(
A(0)

1

)
, F
(
{B}∪A(0)

2

))
= 0.06. Thus, we assign

B={1, 3} to the cluster A1.

We have for focal element B={2, 3}. If B∈A1, then F
(
{B}∪A(0)

1

)
=0.3F{1}+

0.2F{2,3}+0.5FX , F
(
A(0)

2

)
=0.2F{2}+0.8FX and Con

(
F
(
{B}∪A(0)

1

)
, F
(
A(0)

2

))
=

0.06. But if B∈A2, then F
(
A(0)

1

)
=0.3F{1}+0.7FX , F

(
{B}∪A(0)

2

)
=0.2F{2}+

0.2F{2,3}+0.6FX and Con
(
F
(
A(0)

1

)
, F
(
{B}∪A(0)

2

))
=0.12. Thus, we assign B=

{2, 3} to the cluster A2 and we get the final focal element clustering A1 =
{{1}, {1, 3}}, A2 ={{2}, {2, 3}}.

Remark 1. The distance between the selected focal elements can also be
considered at step 2 of the algorithm in addition to calculating the conflict
density (function ϕF ), as was done in [2]. In this case, the focal elements are
selected in descending order of the function ϕF . If A′ is a set of already selected
focal elements, then the next element Ak is added to this set, provided that
minA∈A′ d(F ({A}), F ({Ak})) > h, where d is some metric on the set of evidence
bodies [7], h is the threshold value.

3.4 The k-means algorithm for the body of evidence

Let F = (A,m) be the body of evidence. It is required to find such a coverage of
the set of all focal elements A by subsets (clusters) C = {A1, . . . ,Al} that would
minimize intracluster conflict. We will use the concept of center of a set (cluster)
of focal elements by analogy with the classical k-means algorithm. By the center
of the i-th cluster Ai, we mean some body of evidence Ci constructed from
the pair (Ai,mi), where mi is the restriction of the mass function to Ai ⊆ A,
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i = 1, . . . , l. We will consider the total conflict between the centers of clusters
and the bodies of evidence generated by the focal elements of these clusters as
a minimized functional by analogy with the k-means algorithm:

Φ =

l∑
i=1

∑
B∈Ai

Con (F ({B}), Ci), (1)

where F ({B}) is the evidence generated from the set {B} using the restric-
tion and extension procedures (see subsection 3.1). In particular, if the vacuous
extension is chosen, then F ({B}) = m(B)FB + (1−m(B))FX .

In this algorithm, the number of evidence bodies l into which the evidence
body F = (A,m) is decomposed will be considered predetermined (it is deter-
mined from some other heuristic considerations). Also, the method of extension
the mass function will be considered predetermined.

Let us assume that the covering C = {A1, . . . ,Al} is fixed and the center of
the i-th cluster has the form

Ci =
∑
A∈Ai

αi(A)FA, (2)

where αi = (αi(A))A∈Ai
∈ S|Ai|, Sk =

{
(t1, ..., tk) : ti ≥ 0, i = 1, ..., k,

∑k
i=1 ti = 1

}
is the k-dimensional simplex. Then we have for the vacuous extension

Φ =

l∑
i=1

∑
B∈Ai

Con (F ({B}), Ci) =

l∑
i=1

∑
B∈Ai

m(B)
∑

A∈Ai:
A∩B=∅

αi(A) =

=

l∑
i=1

∑
B∈Ai

m(B)

1−
∑

A∈Ai:
A∩B 6=∅

αi(A)

 = kC −
l∑
i=1

Qi(αi),

where kC =
∑l
i=1

∑
B∈Ai

m(B) ≥ 1 (kC = 1⇔ C = {A1, . . . ,Al} is the partition
of the set of focal elements), Qi(αi) =

∑
A∈Ai

αi(A)PlAi
(A) and PlAi

(A) =∑
B∈Ai:
A∩B 6=∅

m(B) is the restriction of the plausibility function to the set Ai. The

minimum of the functional Φ for a fixed coverage C = {A1, . . . ,Al} will be
achieved when the linear functions Qi(αi) reach maxima on the simplices S|Ai|,
i = 1, . . . , l. But

max
α∈S|Ai|

Qi(α) = max
A∈Ai

PlAi(A), i = 1, . . . , l.

Let Ai =

{
A ∈ Ai : A = arg max

A∈Ai

PlAi(A)

}
. If

Ci =
∑
A∈Ai

αi(A)FA, αi = (αi(A))A∈Ai
∈ S|Ai|, i = 1, . . . , l, (3)
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then the functional Φ will reach a minimum in the case of a fixed coverage
C = {A1, . . . ,Al} with such a choice of cluster centers. This minimum will be

minΦ = kC −
l∑
i=1

max
A∈Ai

PlAi(A) (4)

and does not depend on the choice of parameters αi = (αi(A))A∈Ai
∈ S|Ai|,

i = 1, . . . , l.
Then the evidence body clustering algorithm, by analogy with the classical

k-means algorithm, will be as follows.
Algorithm 2.
1. Let’s choose and fix the number of clusters l. Let’s assign some evidence

bodies as initial cluster centers C
(0)
i , i = 1, ..., l. We fix the threshold of maximum

conflict within clusters Conmax ∈ [0, 1]. We install s = 0.
2. We redistribute focal elements among clusters according to the principle of

minimizing the conflict between evidence clusters and cluster centers. The focal

element B ∈ A is assigned to the cluster A(s)
i = arg minjCon

(
F ({B}), C(s)

j

)
and miniCon

(
F ({B}), C(s)

i

)
≤ Conmax. If miniCon

(
F ({B}), C(s)

i

)
> Conmax,

then the focal element B is assigned as the center of the new cluster. As a result,

we get clusters A(s)
i , i = 1, ..., l.

3. Let us calculate new cluster centers using the formulac. We increase the
counter s← s+ 1.

4. Steps 2 and 3 are repeated until the clusters (or their centers) stabilize.

Proposition 1. Algorithm 2 converges in a finite number of steps.

The proof follows from the fact that the functional Φ does not increase at
the 2nd and 3rd steps of the algorithm and we have a finite number of possible
configurations.

Remark 2. Evidence bodies C
(0)
i = FAi

, i = 1, ..., l can be chosen as the
initial centers of clusters at the 1st step of the algorithm, where focal elements Ai,
i = 1, ..., l are chosen arbitrarily or, for example, using the density maximization
algorithm.

Remark 3. Cluster centers may depend on parameters α = (α(A))A∈Ai
∈

S|Ai| (see formula (3)). In this case, it is necessary to use additional procedures

for choosing parameters at the 2nd or 3rd steps of the algorithm. The selection
criteria can be considered, for example:

1) coverage minimization, i.e., we choose the parameters at the 2nd step of
the algorithm so that the coverage C = {A1, . . . ,Al} is ’closer’ to the partition.

For example,
∑l
i=1 |Ai| → min.

2) minimizing the uncertainty of evidence-centers of clusters Ci, i = 1, ..., l.
This procedure is applied at the 3rd step of the algorithm. The uncertainty of
evidence can be assessed using one of the imprecision indices [1]. For example,
it can be the generalized Hartley measure H(Ci) =

∑
A∈Ai

αi(A) ln |A|.
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3) minimizing the distance between cluster centers and the original evidence
body with respect to some metric between evidence bodies [7]: d(Ci, F )→ min,
i = 1, ..., l;

4) maximizing distance between cluster centers d(Ci, Cj) → max or maxi-
mizing conflict Con(Ci, Cj)→ max, i, j = 1, ..., l (i 6= j) etc.

Remark 4. One way to evaluate the internal conflict [9] of a body of evi-
dence F on the X is based on finding the maximum of the contour function [3]:
Con(F ) = 1 − maxx∈XPl(x). Then formula (4) can be interpreted as a total
intra-cluster internal conflict.

Remark 5. It is possible to search for cluster centers Ci, i = 1, ..., l in the
form (2), minimizing the functional (1) with a fixed coverage C = {A1, . . . ,Al}
and under the condition that uncertainties of cluster centers Ci are bounded:

H(Ci) =
∑
A∈Ai

αi(A) ln |A| ≤ ui, i = 1, ..., l,

where ui, i = 1, ..., l are some threshold values. Then the problem of minimizing
the functional (1) for a fixed coverage C = {A1, . . . ,Al} is reduced to solving l
linear programming problems:∑

A∈Ai

αi(A)PlAi(A)→ max

subject to αi = (αi(A))A∈Ai
∈ S|Ai|,

∑
A∈Ai

αi(A) ln |A| ≤ ui, i = 1, ..., l.

Example 2. Algorithm 2 will give the following result of clustering the body of
evidence from Example 1 (X = {1, 2, 3}, F = 0.3F{1} + 0.2F{2} + 0.3F{1,3} +
0.2F{2,3} into two clusters and the vacuous extension.

Step 1. We have l = 2. Let the initial centers of the clusters be equal to

C
(0)
1 = F{1}, C

(0)
2 = F{2}; s = 0.

Step 2. We have Con
(
F ({1}), C(0)

1

)
=Con

(
F ({1, 3}), C(0)

1

)
= 0,

Con
(
F ({2}), C(0)

1

)
=Con

(
F ({2, 3}), C(0)

1

)
= 0.2,

Con
(
F ({1}), C(0)

2

)
= Con

(
F ({1, 3}), C(0)

2

)
=0.3, Con

(
F ({2}), C(0)

2

)
=

Con
(
F ({2, 3}), C(0)

2

)
=0 (for example, Con

(
F ({1, 3}), C(0)

2

)
=

Con
(
0.3F{1,3} + 0.7FX , F{2}

)
= 0.3).

Therefore, according to the principle of minimizing the conflict between
evidence clusters and cluster centers, the initial clustering will have the form

A(0)
1 = {{1}, {1, 3}}, A(0)

2 = {{2}, {2, 3}}.
Step 3. Let us calculate the new cluster centers using the formula (3)):

PlA(0)
1

({1}) = 0.3 + 0.3 = 0.6, PlA(0)
1

({1, 3}) = 0.3 + 0.3 = 0.6, PlA(0)
2

({2}) =

0.2 + 0.2 = 0.4, PlA(0)
2

({2, 3}) = 0.2 + 0.2 = 0.4.

Therefore C
(1)
1 = αF{1} + (1 − α)F{1,3} and C

(1)
2 = βF{2} + (1 − β)F{2,3},

α, β ∈ [0, 1].
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If we require the minimization of the generalized Hartley measure (see Re-

mark 2), we get C
(1)
1 = arg min

0≤α≤1
H
(
αF{1} + (1− α)F{1,3}

)
= F{1}, C

(1)
2 =

arg min
0≤β≤1

H
(
βF{2} + (1− β)F{2,3}

)
= F{2} and the algorithm will stop its work,

since the centers of the clusters have not changed. If, however, we apply the
coverage minimization rule (see Remark 3), we move on to the next step.

Step 4. We redistribute focal elements according to the criterion of least
conflict with new centers:

Con
(
F ({1}), C(1)

1

)
=Con

(
F ({1, 3}), C(1)

1

)
=0, Con

(
F ({2}), C(1)

1

)
=0.2,

Con
(
F ({2, 3}), C(1)

1

)
=0.2α, Con

(
F ({1}), C(1)

2

)
= 0.3,

Con
(
F ({1, 3}), C(1)

2

)
=0.3β, Con

(
F ({2}), C(1)

2

)
=Con

(
F ({2, 3}), C(1)

2

)
=0.

We will get clusters A(1)
1 = {{1}, {1, 3}}, A(1)

2 = {{2}, {2, 3}} after applying
the coverage minimization rule (see Remark 3). Clusters have stabilized. Stop of
the algorithm.

As a result, we get, in fact, a new body of evidence defined on the base set
A, the found coverage sets (clusters) C = {A1, . . . ,Al} will be focal elements,
the mass function will be equal to m(Ai) =

∑
B∈Ai

m(B)/n(B), where n(B) =
|{Ai : B ∈ Ai}| (the number of clusters containing the set B). Such a body of
evidence can be considered second-order evidence, which reflects the enlarged
structure of the original evidence.

4 Evaluation of the internal conflict of the body of
evidence based on its clustering

Let us assume that in one way or another, a cluster coverage C = {A1, . . . ,Al}
(in a particular case, partitioning) of the body of evidence F = (A,m) is ob-
tained. Then we can offer the following ways to evaluate the internal conflict of
this body of evidence using some measure of external conflict Con:

1) Con1(F ) = Con(F (A1), . . . , F (Al));
2) Con2(F ) = Con(C1, . . . , Cl), where C1, . . . , Cl are centers of clusters

A1, . . . ,Al respectively.
For example, we will obtain the following estimates of the internal conflict

for the body of evidence considered in Example 2, the vacuous extension, and
the canonical measure of the external conflict. We have A1 = {{1}, {1, 3}},
A2 = {{2}, {2, 3}} and Con1(F ) = Con(F (A1), F (A2)) = 0.18, Con2(F ) =
Con(C1, C2) = α+ (1− α)β, α, β ∈ [0, 1].

Proposition 2. The following equality is true

Con1(F ) = Con(F (A1), . . . , F (Al)) =
∑

A1∈A1,...,Al∈Al

Con(F ({A1}), . . . , F ({Al})).
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5 Conclusion

Two methods of evidence body clustering are discussed in this paper. Each of
these methods assumes that weakly conflicting focal elements should belong to
one cluster, and strongly conflicting focal elements should belong to different
clusters. This requirement is similar to the basic principle of compactness in
cluster analysis: the distances between elements of one cluster should be minimal,
and between clusters should be maximum.

The first algorithm is based on the use of the distribution density function of
conflicting focal elements. The second algorithm implements the idea of the k-
means method. In this case, the cluster centers are formed in some optimal way.
Further, focal elements are redistributed according to the principle of minimizing
conflict with cluster centers.

It shows how clustering can be used to evaluate the internal conflict of a
body of evidence.
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