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Abstract. The paper studies the variation of the conflict measure with
blurring of focal elements and discounting of the masses of the belief
functions in the framework of the theory of evidence. Blurring of focal
elements is modeled using fuzzy sets. Such properties of the conflict mea-
sure as the robustness to transformations of the bodies of evidence, the
monotonicity and the direction of change are investigated. A numerical
example of calculating the measure of conflict, taking into account the
blurring of focal elements and discounting of masses for the selection of
bodies of evidence for the aggregation of analysts’ forecasts regarding
the oil price, is considered.
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1 Introduction

Conflict assessment and combining of evidence bodies in the evidence theory
is a two-pronged problem. On the one hand, the conflict value must be taken
into account when combining evidence. On the other hand, the conflict itself is
estimated, as a rule, with the help of aggregation of evidence bodies. The method
of conflict estimation and the choice of the combining rule should be consistent
with each other in a certain sense [9].

As a rule, the (external) conflict of two bodies of evidence is understood
as a quantity proportional to the sum of the products of the masses of non-
intersecting (or ’weakly intersecting’ with respect to some similarity index) focal
elements of this evidence. For example, the conflict in Dempster’s rule [2] is the
mass of the empty set obtained using the non-normalized conjunctive rule.

Robustness is one of the important requirements for conflict assessment.
We will under-stand by robustness the stability of the conflict measure to the
’small’ variation of focal elements and their masses. In general, the robustness
of calculation the conflict measure can be achieved by applying specialization-
generalization procedures [1, 5].
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We will consider bodies of evidence, the focal elements of which are defined
on some set X ⊆ R [11]. The specialization-generalization procedure for such
bodies of evidence can be implemented using fuzzy blurring of focal elements.
The concept of fuzzy focal elements was considered, for example, in [12, 13].

If the focal elements on the X ⊆ R are defined by experts, then information
on the preferential conservatism or radicalism of expert can also be taken into
account using the blur procedure. For example, if one expert predicts the value
of shares of a certain company in the interval A = [40, 45), and another in the
interval B = [35, 50), then the second evidence can be considered more conserva-
tive than the first. If the second expert often gives conservative estimates, then
we can assume that the interval B is a support of a fuzzy number-evidence. On
the contrary, if the estimates of the first expert are often radical, then we can
assume that the interval A is the kernel of a fuzzy number-evidence.

Finally, the blurring procedure of focal elements can be used to account for
the reliability of information sources together with a procedure for discounting
the masses.

In this paper, we will investigate some properties of the conflict measure
of evidence bodies, determined on the X ⊆ R, taking into account blurring of
focal elements and discounting of masses. A numerical example of the choice for
combining evidence bodies will be considered, taking into account their conflict,
reliability and accuracy and using the procedure for blurring of focal elements.

2 Background of the Belief Function Theory

Let X be some set, A ⊆ 2X be some finite subset of nonempty sets from X . Some
non-negative mass function m : 2X → [0, 1],

∑
A∈A m(A) = 1 is considered in

the theory of evidence [2, 10]. Without loss of generality, we can assume that
m(A) > 0 for all A ∈ A. In this case, set A is called the set of focal elements,
and a pair F = (A,m) is called a body of evidence. Let F(X) be a set of all
bodies of evidence on X . There is one-to-one correspondence between the body
of evidence F = (A,m) and the belief function Bel(A) =

∑
B⊆A m(B) or the

plausibility function Pl(A) =
∑

B:A∩B 6=∅m(B).

The body of evidence (evidence) FA = (A, 1) (i.e., A = {A}, m(A) = 1) is
called categorical. In particular, the body of evidence FX is called vacuous.

Then any body of evidence F = (A,m) can be represented as a convex sum
of categorical bodies of evidence: F =

∑
A∈A m(A)FA. The body of evidence is

called simple, if F ζ
A = (1 − ζ)FA + ζFX , ζ ∈ [0, 1].

In this paper, we will consider evidence bodies on X ⊆ R [11]. Moreover, we
assume that all focal elements of evidence are intervals of the form [a1, a2). In this
case, the intersection of such sets will also have the form [a1, a2). Consequently,
we get a new set of focal elements of the same kind when combining the bodies
of evidence using conjunctive rules.

Suppose there are two bodies of evidence F1 = (A1,m1) and F2 = (A2,m2).
It is necessary to assess the conflict between these two bodies of evidence. Tra-
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ditionally this is done most often with the help of the measure

Con0(F1, F2) =
∑

A∩B=∅

m1(A)m2(B).

However, this measure does not take into account the ’weakly intersecting’
(i.e. pairs of intersecting focal sets of different bodies of evidence for which the
external measure (for example, the length of interval on R) the intersection
of the sets is small compared to the external measure of each of these sets)
focal elements of the bodies of evidence. The value of the conflict should be a
decreasing function of the value of the ’strong’ intersection of focal elements with
large masses in the general case. Therefore, we will use the measure

ConΓ (F1, F2) =
∑

A∈A1,B∈A2

γ(A,B)m1(A)m2(B), (1)

instead of the measure Con0(F1, F2) to account for ’weakly intersecting’ focal
elements, where Γ = (γ(A,B))A,B∈A, γ(A,B) = 1 − s(A,B) and s(A,B) is a
similarity index satisfying the conditions: 1) 0 ≤ s(A,B) ≤ 1; 2) s(A,B) = 0,
if A ∩ B = ∅; 3) s(A,A) = 1 (or weaker condition 3)’ max

B
s(A,B) = s(A,A)).

An example of such an index is the Jaccard index s(A,B) = |A ∩B|/|A ∪B|,
which we will mainly consider in this article. Note that if γ(A,B) = 1 in the case
A ∩ B = ∅ and γ(A,B) = 0 in all other cases, then in (1) we get the measure
Con0(F1, F2). Some properties of the bilinear conflict measure of the form (1)
were investigated in [6].

The conflict measure (1) will be coordinated with the combination of the
bodies of evidence F1 = (A1,m1), F2 = (A2,m2), according to the rule F1,2 =
(A,m1,2) = F1⊗F2, where

m1,2(C) =
1

K

∑

A∩B=C

s(A,B)m1(A)m2(B), (2)

if K = 1−ConΓ (F1, F2) 6= 0. This is Zhang’s center combination rule [14]. The
general structure of the bilinear combination rules was investigated in [7].

The reliability of information sources can be taken into account using Shafer’s
discounting method [10]: m(η) (A) = ηm(A), if A 6= X and m(η)(X) = 1 −
η + ηm(X), where η ∈ [0, 1]. The change in ignorance after the application of
Dempster’s rule to the discounted bodies of evidence was studied in [8].

3 Blurring Focal Elements

Let F̃ = (Ã, m̃) be a transformation of the body of evidence F = (A,m), where

Ã is a set of fuzzy focal elements, i.e. blurring intervals from the A; m̃ is a
discounted mass function.

We will consider below the important properties of the conflict measure in
relation to blur and discounting operations. Let d be some metric on the set of
all fuzzy sets (see [4]).
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Definition 1. (robustness). The conflict measure Con will be called robust to
small transformations˜of the bodies of evidence, if ∀F1, F2 ∈ F(X) and ∀ε >

0 ∃δ1, δ2 > 0:
∣∣∣Con(F̃1, F2)− Con(F1, F2)

∣∣∣ < ε ∀F̃1 = (Ã1, m̃1) ∈ F(X):

d
(
Ã1,A1

)
=

∑
A∈A1

d
(
Ã, A

)
< δ1, d (m̃1,m1) =

∑
A∈A1

|m̃(A)−m(A)| < δ2.

Definition 2. (monotonicity). Let’s call the conflict measure Con monotonic
(strictly monotonic) with respect to a given transformation˜ of the body of ev-

idence, if ∀F1, F2, F3 ∈ F(X): Con(F1, F2) ≤ Con(F1, F3) ⇒ Con(F̃1, F2) ≤

Con(F̃1, F3) (the corresponding inequalities are strictly).

If the conflict measure is monotonic, then blurring does not change the order
relation with respect to that measure. In particular, in the problem of choosing
the least conflicting evidence bodies for combining, the monotonicity of the con-
flict measure means that these transformations of evidence bodies will not lead
to a change in the choice.

It is easy to see that the conflict measure Con0 is monotonic if the transfor-
mation is reduced only to discounting the masses according to Shafer’s method.

Definition 3. (directionality of change). A transformation˜ is said to be non-

increasing (not decreasing) the conflict measure Con, if Con(F̃1, F2) ≤ Con(F1, F2)

(Con(F̃1, F2) ≥ Con(F1, F2)) ∀F1, F2 ∈ F(X).

It is easy to see that discounting the masses by Shafer’s method does not in-
crease the degree of conflict Con0. This observation is interpreted as follows: if we
know that the reliability of the information source is low, then this information
itself becomes less conflicting with information from other sources.

The properties of monotony and directionality of transformation may not be
satisfied for arbitrary conflict measure and transformation of evidence bodies.

Let the number η ∈ [0, 1] characterize the level of reliability of the information
source (η = 1 corresponds to an absolutely reliable source). If the source of
information is not entirely reliable (η < 1), then we will consider blurring of
focal elements together with discounting of masses. If A = [a1, a2) is a focal
element, then Ã = A(η) is a fuzzy number associated with A. We have that
A(1) = A.

Let the symmetric (L-R)-type fuzzy number [4] Ã be the blur of the focal
element A = [a1, a2). It means that the fuzzy number Ã has a membership

function µÃ: µÃ(x) = 1 for x ∈ [x1, x2), µÃ(x) = L(x) = θ
(

x1−x
δ|A|

)
for x ∈

[x1 − δ |A| , x1], µÃ(x) = R(x) = θ
(

x−x2

δ|A|

)
for x ∈ [x2, x2 + δ |A|], where x1 ≤

x2, δ ∈ (0, 1) and a strictly decreasing integrable function θ : [0, 1] → [0, 1]
satisfies the conditions θ(0) = 1, θ(1) = 0. The value δ = δ(η) > 0 controls the
degree of blur. We assume that δ(1) = 0 and δ(η) are a non-increasing function
on [0, 1].

As a result, we get a fuzzy focal element Ã = A(η), which is a blur (more
precisely, a δ-blur) of the element A, ker Ã = {x ∈ R : µÃ(x) = 1} = [x1, x2] (the
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core of the fuzzy number Ã), supp Ã = {x ∈ R : µÃ(x) > 0} = [x1 − δ |A| , x2 + δ |A|]

(the support of the fuzzy number Ã). Let
∣∣∣Ã

∣∣∣ =
∫
X
µÃ(x)dx be the cardinal-

ity of a fuzzy set Ã, EI[Ã] = [E[L],E[R]], where E[L] =
∫ x1

−∞
xdL(x), E[R] =

−
∫ +∞

x2
xdR(x) (expected interval of the fuzzy number Ã).

If an expert (decision maker, DM) is a source of information, then different
blurring strategies, depending on the information about the degree of caution of
the DM, are possible:

1) if the DM estimates are too careful (conservative), then supp Ã = A

(internal blur);

2) if the DM estimates are excessively accurate (radical), then ker Ã = A

(external blur);

3) if the DM estimates are neutral, then EI[Ã] = Ā, where EI is the expected
interval of a fuzzy number (neutral blur).

The meaning of these conditions is as follows. A cautious expert’s assessments
are often too imprecise. Therefore, they should be made more accurate (supp Ã =
A) when blurring. On the other hand, the assessments of an careless expert
are often overly precise. Therefore, they must be expanded (ker Ã = A) when
blurring.

Lemma 1. The following properties are valid:

a) ker Ã = [a1 + δ |A| , a2 − δ |A|], δ = δ(η) ∈ (0, 0.5] for internal δ-blur (i.e.
supp Ã = A);

b) supp Ã = [a1 − δ |A| , a2 + δ |A|], δ = δ(η) > 0 for external δ-blur (i.e.
ker Ã = A);

c) ker Ã = [a1 + δ |A| θ0, a2 − δ |A| θ0], supp Ã = [a1 − δ |A| (1 − θ0), a2 +

δ |A| (1 − θ0)] for neutral δ-blur (i.e. EI[Ã] = Ā), where θ0 =
∫ 1

0
θ(s)ds and

0 < δ(η) ≤ 1
2θ0

.

Corollary 1. If d
(
Ã, A

)
=

∫
X

∣∣µA(x)− µ
Ã
(x)

∣∣ dx, then:

a) d
(
Ã, A

)
= 2δ |A| (1− θ0) for internal δ-blur of the interval A;

b) d
(
Ã, A

)
= 2δ |A| θ0 for external δ-blur of the interval A;

c) d
(
Ã, A

)
= 4δ |A| θ1 for neutral δ-blur of the interval A, where θ1 =

∫ 1

θ0
θ(s)ds.

Note that θ0 = 1
2 , θ1 = 1

8 , if θ(t) = 1−t. The fuzzy number Ã will be trapezoidal
in this case.

Definition 4. The arrangement of intervals of two sets A1 and A2 is called
stable if there is such δ0 > 0 that the nature of the inclusion or intersection
of the pairs suppA-suppB, kerA-ker B is preserved for δ-blur ∀δ < δ0 and
∀A ∈ A1,B ∈ A2. Let’s call this δ-blur small.
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4 Conflict Variation when Transforming Evidence Bodies

Let ηF = (A(η),m(η)),η ∈ [0, 1] be the body of evidence obtained as a result of
blurring the focal elements and discounting the masses of evidence F = (A,m).
We have that 1F = F .

The conflict measure ConΓ will be robust to small transformations in the ev-
idence bodies due to the continuous dependence of the masses on the discounting
parameter η and the Jaccard index s(A,B) on the blurring parameter δ.

Let us first consider the variation of the conflict measure ConΓ when the
transformation consists only in discounting the masses. The following statements
are true.

Proposition 1. The condition ConΓ (ηF1, F2) ≤ ConΓ (F1, F2), η ∈ [0, 1] is
satisfied for the body of evidence F1 and ∀F2 if and only if the inequality

∑

A∈A1

s(A,B)m1(A) ≤ s(X,B) (3)

is true ∀B ∈ A2.

Corollary 2. The condition ConΓ (ηF1, F2) ≤ ConΓ (F1, F2), η ∈ [0, 1] is satis-
fied ∀F1, F2 ⇔ s(AB, B) ≤ s(X,B) ∀B ∈ A2, where AB = argmaxA∈A1

s(A,B).

Corollary 3. If s(A,B) ≤ s(X,B) ∀A,B or s(X,B) = 1 ∀B, then the inequal-
ity ConΓ (ηF1, F2) ≤ ConΓ (F1, F2), ∀η ∈ [0, 1] is true for arbitrary bodies of
evidence F1 and F2.

Example 1. Let s0(A,B) =

{
1, A ∩B 6= ∅,
0, A ∩B = ∅.

Then condition (3) will be true,

since s0(X,B) = 1 ∀B. In this case, we have ConΓ (F1, F2) = Con0(F1, F2) and
we will obtain: Con0(

ηF1, F2) ≤ Con0(F1, F2) ∀η ∈ [0, 1].

Example 2. Let s(A,B) = |A∩B|
|X| . Then the condition s(A,B) ≤ s(X,B) ∀A,B

is satisfied and also the inequality ConΓ (ηF1, F2) ≤ ConΓ (F1, F2), ∀η ∈ [0, 1] is
true.

The continuous dependence of the conflict measure ConΓ (ηF1, F2) on the
discount coefficient η implies that the measure ConΓ will be strictly monotonic
for small (close to 1) discounting of the masses.

If focal elements are blurred only, then we have the following proposition.

Proposition 2. We have in the case of small internal (external) δ-blurring of

focal elements: 0 ≤ ConΓ (ηF1, F2)− ConΓ (F1, F2) ≤
2δ(η)θ0

1−2δ(η)θ0(∣∣ConΓ (F1, F2)− ConΓ (ηF1, F2)
∣∣ ≤ 2δ(η)θ0

(
1− ConΓ (F1, F2)

))
.
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5 Conflict Variation when Transforming Categorical

Bodies of Evidence

We consider more detailed the conflict variation when transforming categorical
bodies of evidence. Let two categorical bodies of evidence FA and FB be given.
Then ConΓ (FA, FB) = 1− s(A,B). We’ll consider blurring and discounting the
body of evidence FA. As a result, we get a simple evidence ηFA = ηFA(η) +(1−
η)FX , where A(η) is some blur of the focal element A. Then

ConΓ (ηFA, FB) = 1− s(A(η), B)η − s(X,B)(1− η).

We will evaluate the change in conflict in the case of discounting and blurring
of categorical evidence for substantially ’close’ focal elements.

Definition 5. The focal elements A and B are said to be substantially close to
each other with respect to the index s, if s(A,B) ≥ max {s(A,X), s(X,B)}.

The substantially closeness of the focal elements A and B suggests that they
are not only close to each other (the value s(A,B) is large), but also strongly
differ from the entire set X . Below, we will consider relations of substantial
closeness only with respect to the Jaccard index.

Suppose now that only the focal element A is blurred in the categorical
evidence FA. In this case, we have the following propositions.

Proposition 3. We have:
1) ConΓ (ηFA, FB) ≥ ConΓ (FA, FB) in the case of small internal blurring of

the element A;
2) in the case of small external blurring of the element A: ConΓ (ηFA, FB) ≥

ConΓ (FA, FB) if B ⊆ A and ConΓ (ηFA, FB) ≤ ConΓ (FA, FB) in all other
cases.

Proposition 4. If the focal element A has the same relative position with the
elements B and C (with respect to mutual inclusion or intersection), then the
conflict measure ConΓ will be monotonic for small blurring of any nature (inter-
nal, external, or neutral) for the triple categorical bodies of evidence FA, FB and
FC , i.e. ConΓ (ηFA, FB) ≤ ConΓ (ηFA, FC), if ConΓ (FA, FB) ≤ ConΓ (FA, FC)
for any admissible values η.

Finally, we present some result on the change in the conflict when discounting
and blurring categorical bodies of evidence only for the case of a stable location
of substantially close focal elements A and B.

Proposition 5. Let the focal elements A and B be stably located, substan-
tially close and B ⊆ A or A ⊆ B. Then the inequality ConΓ (ηFA, FB) ≥

ConΓ (FA, FB) is true for small internal blurs ⇔ δ(η) ≤ 1−η
2θ0

· s(A,B)−s(X,B)
s(A,B)−(1−η)s(X,B)

& B ⊆ A or δ(η) ≤ 1−η
2θ0η

· s(A,B)−s(X,B)
s(A,B) & A ⊆ B.
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6 Numerical Example

Let’s consider an example of selection of analysts’ forecasts on the cost of Brent
crude oil in 2021 for aggregation [3]. Forecast prices provided by 7 major in-
vestment banks: BNP Paribas, Citigroup, RBC, JPMorgan, Bank of America,
Deutsche Bank, Standard Chartered. Each forecast is an interval Ai = [ai, bi),
where ai, bi are the forecasts of the i-th investment bank for Brent crude oil
prices in the 4th quarter of 2020 and in the 4th quarter of 2021, respectively (see
Table 1). Thus, each prediction is categorical evidence FAi

, i = 1, ..., 7.
We will define the reliability ηi of the categorical body of evidence FAi

as
inversely proportional to the deviation of the middle of the predicted interval (the
’mean’ value of the categorical evidence FAi

) E(FAi
) = ai+bi

2 from the current

value of the Brent oil price c0. In this case, the formula ηi =
10+max dk−di

15+max dk−min dk

was used, where di = |E(FAi
)− c0|. The value c0 was taken equal to the price of

Brent oil as of the date 1.03.2021: c0 = 65. The values of the lengths li = l(Ai) =
bi − ai of the intervals-focal elements characterize the degree of uncertainty in
the forecasts. The interval X = [20, 80] was considered as the base set (upper
and lower prices for Brent crude oil for the last three years).

Table 1. Boundaries of focal elements,
reliability and uncertainty of evidence
bodies.

investment banks ai bi ηi li
A1 BNP Paribas 45 59 0.8 14
A2 Citigroup 44 56 0.71 12
A3 RBC 41 55 0.63 14
A4 JPMorgan 39 52 0.53 13
A5 Bank of America 47 51 0.67 4
A6 Deutsche Bank 45 50 0.61 5
A7 Standard Chartered 35 50 0.41 15

Table 2. The values of the conflict mea-
sure ConΓ with discounting and with
mixed blur.

A1 A2 A3 A4 A5 A6 A7

A1 0.26 0.5 0.64 0.75 0.63 0.69 0.76
A2 0.5 0.35 0.55 0.7 0.56 0.61 0.73
A3 0.64 0.55 0.4 0.59 0.59 0.51 0.65
A4 0.75 0.7 0.59 0.44 0.7 0.58 0.57
A5 0.63 0.56 0.59 0.7 0.4 0.58 0.76
A6 0.69 0.61 0.51 0.58 0.58 0.42 0.66
A7 0.76 0.73 0.65 0.57 0.76 0.66 0.43

It seems advisable to use internal blur for ’large’ (in length li) focal elements
and external blur for ’small’ focal elements. It can be seen from Table 1 that
the focal elements A5 and A6 can be considered small and we will use external
blur for them. The rest of the focal elements can be considered large and we
will use internal blur for them. The values of the conflict measure with discount-
ing and with the described mixed blurring are presented in Table 2. The blur
function δ(η) = 1 − η was used. In this case, the following pairs of evidence
are prioritized for combining according to the principle of minimum conflict:
(F1, F2) ≻ (F3, F6) ≻ (F2, F3) ∼ (F2, F5).

Let us now consider the aggregation of the highest priority pairs of bodies of
evidence (F1, F2) and (F3, F6) with mixed blur. We will aggregate simple bodies
of evidence ηiF

A
(ηi)

i

and ηjF
A

(ηj )

j

using the formula (2): ηiF
A

(ηi)

i

⊗ ηjF
A

(ηj )

j

=

(Ai,j ,mi,j) =: Fi,j .
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We will evaluate the quality of the combination by finding changes in the
characteristics of the aggregated evidence compared to the same characteris-
tics of the aggregated evidence bodies. We will consider such characteristics of
evidence as the degree of imprecision, reliability and conflict.

The degree of imprecision of the body of evidence F = (A,m) will be es-

timated using the functional H(F ) =
∑

A∈A m(A) |A|. Let Hi = H
(
ηiF

A
(ηi)

i

)
,

Hi,j = H (Fi,j).
The reliability of the result of combining the bodies of evidence ηiF

A
(ηi)

i

and
ηjF

A
(ηj )

j

(we denote it by ηi,j) will be calculated using the above formula, as a

normalized estimate of the distance from the ’average’ value of the prediction
E (Fi,j) to the current value of c0. The ’average’ value E(F ) of the body of
evidence F = (A,m) is calculated by the formula E(F ) =

∑
A∈A m(A)E(FA)

(if A is a fuzzy number, then E(FA) is equal to the center of gravity of this
number: E(FA) =

∫
X
xµA(x)dx/

∫
X
µA(x)dx).

In addition, we will find the value of the conflict measure ConΓ between the
result of combining Fi,j and each of the bodies of evidence ηiF

A
(ηi)

i

and ηjF
A

(ηj )

j

.

The corresponding values of the conflict measure will be denoted by ConΓ
i and

ConΓ
j . Table 3 shows the changes in the characteristics of imprecision, reliability

and conflict after aggregation of simple bodies of evidence ηiF
A

(ηi)

i

and ηjF
A

(ηj )

j

for pairs of focal elements A1,A2 and A3,A6.

Table 3. Changing characteristics after aggregation.

Hi Hj Hi,j ηi ηj ηi,j ConΓ ConΓ
i ConΓ

j

A1,A2 21.11 23.27 13.77 0.8 0.71 0.73 0.5 0.4 0.34
A3,A6 27.64 27.51 22.01 0.63 0.61 0.64 0.51 0.65 0.4

It can be seen from this table that the degree of imprecision decreases after
combining, reliability increases when combining a pair A3, A6 and changes itself
in different ways when combining a pair A1, A2. The conflict between the result
of the combination and the original evidence is reduced. Thus, we get more
accurate, equally reliable and less conflicting evidence after combining.

7 Conclusion

The measure of the conflict between the bodies of evidence defined on the real
line is considered in this article. The change of this measure in cases of ’blurring’
of focal elements and discounting of masses is investigated. These procedures
are performed in order to improve the robust properties of the conflict measure,
to take into account the caution or optimism of experts as sources of informa-
tion, and also to take into account the reliability of these sources. Blurring of
focal elements is modeled using fuzzy numbers. The properties of the robustness
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and the monotonicity of the conflict measure, the directionality of change of
the conflict measure are considered with regards of small transformation. These
properties are being studied for different types of focal element ’blurring’, which
correspond to varying degrees of expert caution. A numerical example of calcu-
lating the values of the conflict measure, taking into account the blurring and
discounting, when choosing for the subsequent aggregation of expert forecasts
regarding the oil price is considered.
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