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Research Motivation

Research Motivation

There are many techniques for estimating the regression function:

methods of mathematical statistics (e. g., the method of least
squares);

machine learning methods:

K-nearest neighbor smoother,
SVM regression,
regularization-based methods (ridge regression, Lasso method),
splines, etc.

Classical regression methods assume that the data sources are
reliable, and the data itself is accurate.

But not all data is reliable and accurate!

Therefore, the problem of regression analysis with imprecise and
uncertain (unreliable) data is relevant.
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Research Motivation

Possible modelling methods:

inaccuracies — fuzzy sets (fuzzy regression: [Tanaka 1987,
Diamond 1988, etc.];

uncertainties — evidence theory (EVidential REGression
[Petit-Renaud & Denœux 2004], Evidential Neural Network
regression [Denœux 2023]).

The latest methods are implemented based on the K-nearest neighbor
method and belongs to the group of local (nonparametric) regression
analysis methods.

A new approach will be proposed that develops the possibilistic model
[Tanaka 1987] for finding fuzzy linear regression coefficients. At the
same time, this new model of Evidential Regression (ER) will take
into account information about the degree of belief in the found
imprecise (interval or fuzzy) regression coefficients within
the framework of evidence theory [Dempster 1967, Shafer 1974].
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Outline of Presentation

Outline of Presentation

Background from the Theory of Evidence;

Statement of the ER Problem;

ER with Interval Coefficients;
Conjunctive Aggregation of Jointly Consonant Bodies of Evidence;
ER with Fuzzy Coefficients;

Numerical Example;

Summary and Conclusion.
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Theory of Evidence

Background from the Theory of Evidence
[Dempster 1967, Shafer 1974]

Let:

X ⊆ Rn, 2X be the set of all subsets of X;

B is a finite set of subsets of X (focal elements);

m : 2X → [0, 1] is a mass function, m(B) > 0 ⇔ B ∈ B,∑
B∈B m(B) = 1;

F = (B,m) is called a body of evidence (BE);

the BE FB = ({B}, 1) with one focal element is called categorical;
the BE FX is a vacuous;

the BE F = (B,m) can be represented as F =
∑

B∈B m(B)FB;

the BE F β
B = (1− β)FB + βFX , β ∈ [0, 1] is called simple BE;

the BE F = (B,m) is called consonant if B′ ⊆ B′′ or B′′ ⊆ B′

is true for ∀B′, B′′ ∈ B.
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Theory of Evidence

The belief and plausibility functions

Bel(B) =
∑
C⊆B

m(C), P l(B) =
∑

B∩C ̸=∅

m(C)

are assigned to the BE F = (B,m). The function

Pl(x) =
∑

C:x∈C
m(C)

is called the contour function. For BE with normal fuzzy focal
elements this function is equal to

Pl(x) =
∑
C̃

m(C̃)µC̃(x).

The contour function coincides with the possibility distribution
function (= membership function of a fuzzy set) for consonant BE.
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Theory of Evidence

The degree of uncertainty of the BE F = (B,m) is characterized
using the functional

H(F ) =
∑
B∈B

m(B)λ(B),

where λ is the Lebesgue measure. If B = B̃ is a fuzzy set, then

λ(B̃) =

∫
X

µB̃(t)λ(dt),

where µB̃ is the membership function.

We will use the conjunctive rule of combination F = (B,m) =
l
⊗
k=1

Fk of BEs Fk = (Bk,mk), k = 1, . . . , l according to the rule:

m(B) =
∑

B1∩...∩Bl=B,
Bk∈Bk,k=1,...,l

m1(B1) · . . . ·ml(Bl). (1)
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Theory of Evidence

For non-conflicting BEs (i. e. B1 ∩ . . . ∩Bl ̸= ∅ ∀Bk ∈ Bk, k = 1, . . . , l)
this rule coincides with Dempster’s rule [Dempster 1967].

We will consider Ishizuka’s [Ishizuka 1982] approach of generalizing
Dempster’s rule to the case of BEs with fuzzy focal elements:

m(B̃) =
1

k

∑
B̃1∩...∩B̃l=B̃,

B̃k∈Bk,k=1,...,l

hB̃1∩...∩B̃l
m1(B̃1) · . . . ·ml(B̃l), (2)

where k =
∑

B̃k∈Bk,k=1,...,l

hB̃1∩...∩B̃l
m1(B̃1) · . . . ·ml(B̃l), hB̃ = sup

x
µB̃(x).
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ER Problem

Statement of the ER Problem

We consider the problem of approximating point data {(xi, yi)}Ni=1 by
a function f(x;A0, . . . , An), where Aj , j = 0, . . . , n are BEs. For
simplicity, we will further consider only the case of paired linear
regression:

f(x;A0, A1) = A0 +A1x.

We will assume that ER-coefficients are simple BEs of the form

Aα
j = (1− α)F[aj ,bj ] + αFXj ,

where Xj ⊆ R, j = 0, 1.

Each ER-coefficient is determined by one focal element (an interval or
a fuzzy number) and the degree of confidence that the true value of
the coefficient belongs to this element.
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ER Problem ER with Interval Coefficients

ER with Interval Coefficients

Note that specifying a pair of simple BEs-coefficients is equivalent
to specifying one simple BE on the set of parameters

Fα
D = (1− α)FD + αFΠ, (3)

where D (Π) are some rectangle in R2, D ⊆ Π limited by lines with the
desired (possible) parameters:

D = {w = (w0, w1) : Lw(x) = w0 + w1x ≈ {(xi, yi)}Ni=1}.
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ER Problem ER with Interval Coefficients

The model will consist of the following steps.

1. To determine Π we find the regression line Lc(x) = c0 + c1x
(assuming that the errors are distributed according to the normal
law N(0, σ2)) using the formulas:

c1 =

∑N
i=1 (xi − x̄)(yi − ȳ)∑N

i=1 (xi − x̄)2
, c0 = ȳ − c1x̄,

x̄ =
1

N

N∑
i=1

xi, ȳ =
1

N

N∑
i=1

yi.

Next, we find the rectangle Π containing all sample points
and located ”along” the regression line Lc.

2. We find two lines of the form L±(x) = (c0 ±∆0) + (c1 ±∆1)x
which, together with the rectangle Π, limit the domain Ds ⊆ Π
of minimal area and satisfying the condition

1

N
|{i : (xi, yi) ∈ Ds}| ≥ 1− αs, αs ∈ (0, 1).
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ER Problem ER with Interval Coefficients

3. The problem of step 2 is solved for l values 0 < α1 < . . . < αl ≤ 1.
As a result, we obtain l simple BEs Fαk

Dk
, k = 1, . . . , l.

4. Simple BEs Fαk
Dk

, k = 1, . . . , l are aggregated using the conjunctive

rule F = ⊗l
k=1 F

αk
Dk

. As a result, we will obtain the final BE, which
will determine the ER coefficients.
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ER Problem Aggregation of Jointly Consonant BEs

Conjunctive Aggregation of Jointly Consonant BEs

The simple BEs Fαk
Dk

, k = 1, . . . , l may turn out to be jointly
consonant, i. e. there exists a permutation of indices such that:
Di1 ⊆ . . . ⊆ Dil ⊆ Π.

Proposition

The BE F = (A,m) =
l
⊗
k=1

Fαk
Dk

obtained as a result of conjunctive

aggregation of jointly consonant simple BEs Fαk
Dk

, k = 1, . . . , l will be
consonant, A = {D1, . . . , Dl,Π}. If
∅ = Di0 ⊆ Di1 ⊆ . . . ⊆ Dil ⊆ Dil+1

= Π, then

m (Dik) = (1− αik)αi0αi1 . . . αik−1
, k = 1, . . . , l, m (Π) = αi1 . . . αil ,

P l(x) = αi0 . . . αik−1
if x ∈ Dik\Dik−1

, k = 1, . . . , l + 1, αi0 = 1.
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ER Problem ER with Fuzzy Coefficients

ER with Fuzzy Coefficients

Let us now consider the case when the ER-coefficients are triangular
fuzzy numbers of the form ãj = (cj −∆j , cj , cj +∆j), ∆j ≥ 0, j = 0, 1.
Then the information that the ER-coefficients are such fuzzy numbers
with belief level 1− α can be represented by a simple BE

Aα
j = (1− α)F(cj−∆j ,cj ,cj+∆j) + αFXj , j = 0, 1.

Let us set the problem of finding triangular fuzzy numbers (parameters
cj , ∆j ≥ 0) for which:

1) the uncertainty functional Φ(H(A0), H(A1)) → min
(Φ is the convolution of two terms; e.g. Φ = H(A0) + λH(A1);

2) at least (1− α)N sample points would fall into a given h-cut of
the model solution (ã0)h + (ã1)hx.
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ER Problem ER with Fuzzy Coefficients

The last requirement is equivalent to the condition

|{i : |c0 + c1xi − yi| ≤ (1− h) (∆0 +∆1 |xi|)}| ≥ (1− α)N, (4)

If we use the measure of the uncertainty H(A) =
∑

ã∈Am(ã) |ã| for
the BE A =

∑
ã∈Am(ã)Fã, then

H(Aα
j ) = (1− α)∆j + α |Xj | ∝ ∆j (for fixed α,Xj).

In this case Φ(H(Aα
0 ), H(Aα

1 )) → min ⇔ Φ̃(∆0,∆1) → min.
Then the function to be minimized takes the form∑

i∈I
(c0 + c1xi − yi)

2 + θΦ̃(∆0,∆1) under condition (4),

where θ > 0, I = {i : |c0 + c1xi − yi| ≤ (1− h) (∆0 +∆1 |xi|)}. The
first term (MSE) is added to obtain a stable solution.
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ER Problem ER with Fuzzy Coefficients

If we solve this problem for l values 0 < α1 < . . . < αl ≤ 1, we obtain l
pairs of simple BEs Aαk

0 , Aαk
1 , k = 1, . . . , l with fuzzy focal elements,

which can then be aggregated using the fuzzy conjunctive rule.

As a result, we obtain ER-coefficients Aj =
l
⊗
k=1

Aαk
j , j = 0, 1.
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Numerical Example

Numerical Example. ER with Interval Coefficients

Let us present the results of ER on synthetic data {(xi, yi)}30i=1:

xi ∼ N(13 i+ 1, 0.0009),
i = 1, . . . , 30.

yi ∼
{

N(1 + 2xi, 16), i = 1, . . . , 10,
N(1 + 2xi, 4), i = 11, . . . , 30.

For three values α1 = 0.1, α2 = 0.3, α3 = 0.5, we find the optimal
domains Π = D0 ⊇ D1 ⊇ D2 ⊇ D3, the boundaries of which correspond
to the boundary values of the intervals of the ER-coefficients.
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Numerical Example

As a result, we obtain jointly consonant BEs, from which a contour
function can be constructed:

Pl(x, y) =


1, (x, y) ∈ D3,
0.5, (x, y) ∈ D2\D3,
0.15, (x, y) ∈ D1\D2,
0.015, (x, y) ∈ Π\D1.

This function can be viewed as a membership function of a fuzzy set
that determines the ER-coefficients.
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Numerical Example

Numerical Example. ER with Fuzzy Coefficients

The results of ER with fuzzy coefficients (only the support boundaries
are visualized) for values α1 = 0.1, α2 = 0.3, α3 = 0.5 and h = 0.7,
Φ(t, s) = 0.6t+ 0.4s are shown in Fig.
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Numerical Example

The coefficients are triangular fuzzy numbers ã0 and ã1, the
parameters of which for three values α are given in Table.

ã0 ã1
α1 = 0.1 (−0.89, 1.02, 2.94) (−1.02, 1.85, 4.72)
α2 = 0.3 (0.62, 1.45, 2.28) (0.56, 1.81, 3.06)
α3 = 0.5 (1.38, 1.88, 2.37) (1.02, 1.76, 2.51)

We will perform aggregation Aj =
3
⊗
k=1

Aαk
j , j = 0, 1 of simple

BE-coefficients using Dempster’s rule for fuzzy focal elements. As
a result, we will obtain the final ER-coefficients. The graph of
the contour function Pl1 of the ER-coefficient A1 is shown in Fig.
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Summary and Conclusion

Summary and Conclusion

Two models of ER were considered: with interval and fuzzy focal
elements.
The advantages of these models are:

new models allow us to obtain more complete information about
the desired coefficients with a lower degree of blurring compared
to fuzzy regression models;

these models will be more robust compared to possibility models
of fuzzy regression, since the method does not require that all
sample elements (including outliers) belong to a given cutting set.

Generalization of the proposed methodology to the case of multiple
regression (including the development of computational procedures)
is an important problem for further research.
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