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Research Motivation

Research Motivation

We will consider the problem of aggregating information and
ranking alternatives in the case of an ordinal scale. There are
several aggregation methods in such a scale [Aleskerov 1999].

It is desirable to consider the degree of inconsistency of
information coming from different sources, the degree of its
uncertainty, the reliability of these sources, when developing
aggregation rules. These features are well modeled in the theory of
evidence [Dempster 1967, Shafer 1976].

An evidential approach to aggregating and ranking alternatives
from several sources on an ordinal scale was proposed in a recent
work by the author [Lepskiy 2023].

As an extension of the previous approach, this study introduces a
new class of aggregation rules (so-called threshold rules) that are
more robust and stable.
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The Theory of Evidence

Information from the Theory of Evidence

Let [Shafer 1976, Lepskiy 2023]:

T = {t1, ..., ts} be some finite set with a strict linear order of its
elements t1 < . . . < ts. We will consider on T ordered sequential
sets of elements of the form A = {tr, tr+1, . . . , tr+q} ⊆ T .;(
2T

)
od

⊆ 2T be the set of all such subsets of T ;

m :
(
2T

)
od

→ [0, 1],
∑

A∈(2T )od
m(A) = 1, m(∅) = 0 is the basic

belief assignment (mass function);

A = {A} is the set of all focal elements, i. e. A ∈ A if m(A) > 0;

F = (A,m) is the body of evidence (BE);

FA = ({A}, 1) is called categorical BE. In particular,
FT = ({T}, 1) is called vacuous BE;

an arbitrary BE F = (A,m) can be represented as
F =

∑
A∈Am(A)FA;

Fα
A = αFA + (1− α)FT , α ∈ (0, 1) is called simple BE.
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The Theory of Evidence

We will use conjunctive rules to aggregate the vector scores represented
by BEs Fk = (Ak,mk), k = 1, . . . , n. The non-normalized conjunctive

rule has the form F∩ =
n
⊗∩
k=1

Fk = (A ∪ {∅},m∩), where

m∩(A) =
∑

B1∩...∩Bn=A

m1(B1) . . .mn(Bn).

The value

Con(F1, . . . , Fn) = m∩(∅) =
∑

B1∩...∩Bn=∅

m1(B1) . . .mn(Bn)

characterizes the degree of inconsistency of sources of information
presented by BEs, and is called a measure of conflict.
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The Theory of Evidence

If m∩(∅) > 0, then it is necessary to redistribute the mass m∩(∅) among
other focal elements. Next, we will use the classical Dempster rule ⊗D,
in which the redistribution of mass m∩(∅) is carried out uniformly over
all focal elements: m(A) = 1

1−m∩(∅)m∩(A), if A ̸= ∅ and m(∅) = 0.

The BE F = (A,m) can be transformed into the pignistic
probability BetF :

BetF (ti) =
1

1−m(∅)
∑

A∈A, ti∈A

m(A)

|A|
, i = 1, . . . , s.
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Threshold Operations of Evidence Theory Similarity Coefficients

Threshold Operations of Evidence Theory.
Similarity coefficients

Since conjunctive rules are based on counting the masses of intersecting
focal elements, the main idea of using threshold rules is to take into
account only ”significant” such intersections in operations.

We will use the n-ary similarity coefficient S(B1, . . . , Bn) to measure
the degree of intersection. It must satisfy the conditions:

1 0 ≤ S(B1, . . . , Bn) ≤ 1;
2 S(B1, . . . , Bn) = 0 ⇔ B1 ∩ . . . ∩Bn = ∅;
3 S(B1, . . . , Bn) = 1 ⇔ B1 = . . . = Bn.

Examples of such indices are:

J(B1, . . . , Bn)=
|B1 ∩ . . . ∩Bn|
|B1 ∪ . . . ∪Bn|

, D(B1, . . . , Bn)=
2|B1∩...∩Bn| − 1

2|B1∪...∪Bn| − 1
. (1)

We will consider only those focal elements ”significant” for which
S(B1, . . . , Bn) > h is true for some threshold value h ∈ [0, 1).
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Threshold Operations of Evidence Theory Threshold Rules and Measures

Threshold Rules and Measures

Then, for example, Dempster’s threshold rule will have the form

(notation: F (h) =
n
⊗h
k=1

Fk):

mh(A) =
1

Kh

∑
B1∩...∩Bn=A,
S(B1,...,Bn)>h

m1(B1) . . .mn(Bn), mh(∅) = 0, (2)

where Kh =
∑

S(B1,...,Bn)>h

m1(B1) . . .mn(Bn).

The value

Conh(F1, . . . , Fn) = 1−Kh =
∑

S(B1,...,Bn)≤h

m1(B1) . . .mn(Bn) (3)

can be considered as a threshold measure of conflict between BEs.
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Threshold Operations of Evidence Theory Averaging Operators

Averaging Operators

When we make a decision based on information obtained using
threshold rules, we can either choose some specific threshold h ∈ [0, 1)
or we can use integral characteristics.

If gh is some point characteristic integrable with respect to h ∈ [0, 1),
then the linear averaging operator can be used

Avw(g·) =

1∫
0

w(h)gh dh, (4)

where w(h) is a non-negative integrable weight function that regulates
the importance priorities of the values h ∈ [0, 1) and satisfies the

condition
1∫
0

w(h)dh = 1.
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General Scheme of Evidence-Based Ranking

General Scheme of Evidence-Based Ranking

Suppose that information from n experts about l alternatives
{a1, . . . , al} is given in the form of simple BEs

Fjk = αjkFAjk
+ (1− αjk)FT , k = 1, . . . , n, j = 1, . . . , l

on a rank scale T = {t1, . . . , ts}, t1 < . . . < ts. The BE Fjk informs that
the assessment of the j-th alternative belongs to the interval Ajk ⊆ T in
the opinion of the k-th expert with a degree of confidence αjk ∈ [0, 1].
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General Scheme of Evidence-Based Ranking

Let us perform the following steps for an evidential threshold ranking
of these alternatives.

1 We aggregate the BEs Fjk from all n experts and for each j-th
alternative using Dempster’s threshold aggregation rule (1)-(3).

We obtain BEs F
(h)
j =

n
⊗h
k=1

Fjk, j = 1, . . . , l, h ∈ [0, 1).

2 Next, we apply the averaging functional (4) to the aggregated

estimates F
(h)
j . We obtain the BE Fj = Avw(F

(·)
j ), j = 1, . . . , l.

3 Let us find the pignistic probabilities BetFj , j = 1, . . . , l.

4 Finally, we will perform the final ranking of alternatives
{a1, . . . , al} using some ranking function g(aj), which determines
the rank of the alternative:

aj ≻ ar (aj ∼ ar), if g(aj) > g(ar) (g(aj) = g(ar)).
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General Scheme of Evidence-Based Ranking

The following functions are examples of rankings based on pignistic
probabilities:

g(aj) = mode Bet
F

(h)
j

= argmax
ti

Bet
F

(h)
j

(ti) for some specific

threshold value h ∈ [0, 1);

g(aj) = argmax
ti

Avw(Bet
F

(·)
j

)(ti).

g(aj) = med Bet
F

(h)
j

is the median of the pignistic probability

BetFj .
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Numerical Example

Numerical Example

Let us illustrate the proposed scheme for aggregating expert
assessments and ranking on the data of reviewing articles in the
EasyChair conference management system (https://easychair.org).

This system uses a seven-rank ordinal rating scale T = {t1, . . . , t7}.
These ranks ti, i = 1, . . . , 7 meet the recommendations (in ascending
order) ”strong reject”, ”reject”, ”weak reject”, ”borderline paper”,
”weak accept”, ”accept”, ”strong accept”. In addition, the reviewer
gives an assessment on a five-rank scale (c1 – ”none”, c2 – ”low”, c3 –
”medium”, c4 – ”high”, c5 – ”expert”) about the degree of confidence
in the correctness of his decision: c1 < . . . < c5. For simplicity, we will
assume that the degrees of confidence are given on a numerical scale by
the formula cp = 0.2p, p = 1, . . . , 5.
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Numerical Example

Point data
{(

x
(j)
k , c

(j)
k

)}3

k=1
of n = 3 reviewers regarding l = 4 papers

{a1, . . . , a4} are presented in Table (k is the index of the reviewer, j is

the index of the article), where x
(j)
k ∈ T .

paper a1 paper a2 paper a3 paper a4
reviewer 1 (t6, 0.8) (t6, 1) (t6, 0.8) (t4, 0.6)
reviewer 2 (t5, 1) (t5, 0.4) (t6, 0.6) (t5, 0.4)
reviewer 3 (t4, 0.8) (t5, 0.6) (t3, 0.6) (t6, 1)
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Numerical Example

Let us apply the procedure of blurring point estimates x
(j)
k taking into

account the degrees of confidence c
(j)
k (see [Lepskiy 2023]). As a result,

we get simple BEs

Fjk = c
(j)
k F

A
(
x
(j)
k ,c

(j)
k

) +
(
1− c

(j)
k

)
FT .

Table of focal elements and their masses
(
A
(
x
(j)
k , c

(j)
k

)
, c

(j)
k

)
.

paper a1 paper a2 paper a3 paper a4
reviewer 1 ({t5, t6}, 0.8) ({t6}, 0.95) ({t5, t6}, 0.8) ({t3, t4, t5}, 0.6)
reviewer 2 ({t5}, 0.95) ({t3, t4, t5, t6}, 0.4) ({t5, t6, t7}, 0.6) ({t3, t4, t5, t6}, 0.4)
reviewer 3 ({t4}, 0.8) ({t4, t5, t6}, 0.6) ({t2, t3, t4}, 0.6) ({t6}, 0.95)
Con(j) 0.792 0 0.552 0.57
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Numerical Example

Let us aggregate the BEs F
(h)
j =

n
⊗h
k=1

Fjk using Dempster’s threshold

rule (2) for each j-th article, j = 1, . . . , l. Next, we apply the averaging

functional (4) with weight w to the aggregated estimates F
(h)
j :

Fj = Avw(F
(·)
j ), j = 1, . . . , l. Let us find the pignistic probabilities of

these aggregated estimates BetFj . The ranks of articles obtained using
this procedure for some different averaging weights w and the median
ranking rule are given in Table. The last two lines show the ranks for
h = 0 and h = 0.2 respectively.

a1 a2 a3 a4
w = 1 t5 t5 t5 t5
w = 2(1− h) t5 t6 t5 t5
w = max{6− 18h, 0} t5 t6 t5 t6
w = 3(1− h)2 t5 t6 t5 t5
h = 0 t5 t6 t5 t6
h = 0.2 t5 t6 t5 t4
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Numerical Example

Next Table shows the ranks of articles found by maximizing
pignistic probabilities: a) Bet

F
(h)
j

(ti) with h = 0 and h = 0.2;

b) Avw(Bet
F

(·)
j

)(ti) for all weights from previous Table.

a1 a2 a3 a4
h = 0 t5 t6 t5, t6 t6
h = 0.2 t5, t6 t6 t5, t6 t3, t4, t5
Avw(Bet

F
(·)
j

)(ti) t5 t6 t5, t6 t6

The results obtained by maximizing the averaged pignistic probabilities
are more stable (they depend little on the weights, the threshold-free
result coincides with the average weighted result), but are less
sensitive (articles often have multiple ranks) compared to the median
ranking.

The ranks of articles {a1, a2, a3} do not depend on the threshold
procedures or the averaging weight for median ranking.

Only the rank of the article a4 changes. It drops from t6 to
(on average) t4 when aggregated with h = 0.2.
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Numerical Example

Let us present for comparison the result of ranking using linear
convolution

C(aj) =

3∑
k=1

c
(j)
k x

(j)
k , j = 1, 2, 3, 4

(we will assume that reviewers’ ratings x
(j)
k are given on a numerical

scale ti = i, i = 1, . . . , 7, and c
(j)
k are weights reviewers’ decisions).

We get for our data that C(a1) = 13, C(a2) = 11, C(a3) = 10.2,
C(a4) = 10.4 . This corresponds to the ranking

a1 ≻ a2 ≻ a4 ≻ a3,

which differs significantly from the results of the evidential rankings
discussed above.
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Summary and Conclusion

Summary and Conclusion

threshold aggregation rules within the framework of evidence
theory are introduced in this work. In these rules, only significant
focal elements relative to some measure of similarity and
a specified threshold are taken into account when aggregating
bodies of evidence;

the use of threshold rules in the ranking problem (especially after
applying averaging procedures) improves the robustness of
the results to small changes in the source data and/or the blurring
procedure used, improves the sensitivity of the method, and allows
us to vary the degree of significance of the focal elements that
participate in the aggregation procedure;

the presence of additional aggregation attributes in the form of
a similarity measure and a threshold makes it possible to manage
the conflict of aggregated bodies of evidence, formulate problems
of optimally finding a threshold, etc.
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