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Research Motivation

Research Motivation

Let us consider the classical problem of aggregation of individual
preferences. There are many rules for such aggregation.

In some cases, aggregation rules should be non-compensatory.
This implies that low scores on one criterion cannot be
compensated for by high scores on others.

The so-called threshold aggregation (TA) rule [Aleskerov et al
2010, Aleskerov & Yakuba 2007] is one of the popular aggregation
rules that has a non-compensatory property.

In some cases, the characteristics of alternatives may be
inaccurate. Then the problem of generalizing the TA rule to the
case of inaccurate data is relevant.
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TA Problem with Accurate Data

TA Problem with Accurate Data

The problem of ranking alternatives of a set X of evaluated by n
criteria in a three-gradation scale is being considered. The
alternatives are represented by vectors: x = (x1, . . . , xn), where
xi ∈ {1, 2, 3}. It is required to find an operator φn = φ : X → R that
satisfies the conditions [Aleskerov & Yakuba 2007]:

1) Pareto-domination:
if x,y ∈ X and xi ≥ yi ∀i, ∃s : xs > ys, then φ(x) > φ(y);

2) pairwise compensability of criteria:
if x,y ∈ X and vk(x) = vk(y) k = 1, 2, then φ(x) = φ(y),
where vk(x) = |{i : xi = k}| is the number of estimates of k in the
alternative x, k = 1, 2, 3;

3) threshold noncompensability:
φ(2, . . . , 2︸ ︷︷ ︸

n

) > φ(x) ∀x ∈ X: ∃s : xs = 1;

A. Lepskiy (HSE) Threshold Aggregation INFUS 2024 4 / 25



TA Problem with Accurate Data

4) the reduction axiom:
if ∀x,y ∈ X ∃s : xs = ys, then
φn(x) > φn(y) ⇔ φn−1(x−s) > φn−1(y−s),
where x−s = (x1, . . . , xs−1, xs+1, . . . , xn).

It is shown that the lexicographic aggregation rule is a solution to
this problem:

φ(x) > φ(y) ⇔

v1(x) < v1(y) or

∃j ∈ {1, 2} : vk(x) = vk(y) ∀k ≤ j and vk+1(x) < vk+1(y).

This problem was generalized in [Aleskerov et al 2010] to the case of
m-gradation scales, m ≥ 3.
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TA Problem with Inaccurate Data

TA Problem with Inaccurate Data

There are two main approaches to generalizing TA in the case of
inaccurate data:

development of axiomatics and aggregation rules based on this
new axiomatics;

finding an analogue of the cardinality vector of estimates for
inaccurate data.

An analogue of the cardinality vector of estimates for inaccurate data
can be found in two ways:

finding the vector of scalar cardinalities of a set of inaccurate
estimates;

finding the inaccurate cardinality function of a set of inaccurate
estimates.
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TA Problem with Inaccurate Data

The nature of inaccuracies in data can be different: interval, fuzzy,
probabilistic, etc.

Bellow we will only talk about fuzzy models of data inaccuracy.

Let the alternatives be represented by n-dimensional vectors
x̃ = (x̃1, . . . , x̃n) of fuzzy sets. Each fuzzy set x̃i is defined on a
three-gradation base set {L,M,H} and has a membership function µx̃i

.
We will represent a fuzzy set x̃i as a vector of values of its membership
function: x̃i = (µx̃i

(L), µx̃i
(M), µx̃i

(H)).
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TA Problem with Inaccurate Data

The first approach (let’s call it scalar [Lepskiy 2023]) is based on
calculating a certain measure of proximity FS (x̃i) = ψ (d (x̃i, S0))
between all fuzzy estimates x̃i of a certain gradation S ∈ {L,M,H}
and the reference estimate S0 for a given gradation.

Then the value

vS (x̃) =
∑
x̃i∈S

FS (x̃i), S ∈ {L,M,H}

characterizes the cardinality of the set of fuzzy estimates of the class S.

Now I’ll consider another approach, which is based on calculating the
fuzzy cardinality (FC) of a set of fuzzy estimates of each gradation.
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Fuzzy Cardinality

The procedure for Finding the FC of a Set of
Three-Grade Fuzzy Estimates

Fuzzy cardinality (FC) ṽS(x̃) will be defined on the base set {0, . . . , n}
(n is the number of criteria). The FC membership function µṽS(x̃) of
the class S ∈ {L,M,H} must satisfy the following conditions:

1) µṽS(x̃)(k) = 1 ⇔ k =
⌊∑

x̃∈Sx̃
µx̃(S)

⌋
, where ⌊ ⌋ is rounding down,

Sx̃ is a set of estimates of class S for which the maximum
membership function is achieved;

2) µṽS(x̃) (k) = 0, if k <
⌊∑

x̃∈Sx̃
µx̃(S)

⌋
.

This condition means that the cardinality of the set of estimates
for a class S cannot be less than the number of estimates that
obviously belong to this class.
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Fuzzy Cardinality

Desirable properties of FC would also be the following.
Let Fuz is a certain degree of fuzziness of the set and

Fuz (x̃) = (Fuz (x̃1) , . . . , Fuz (x̃n)) .

For a = (a1, . . . , an) and b = (b1, . . . , bn) vectors, comparison a ≥ b
means that a1 ≥ b1, . . . , an ≥ bn.

3) if Fuz (x̃) ≥ Fuz (ỹ), then Fuz (ṽS(x̃)) ≥ Fuz (ṽS(ỹ))
∀S ∈ {L,M,H}.

4) if Fuz (x̃) = 0, then ṽS(x̃) = vS(x) ∀S ∈ {L,M,H}.
The last condition means that if all fuzzy estimates are non-fuzzy
(i. e. µx̃i

(S) ∈ {0, 1} ∀S ∈ {L,M,H}), then the FC of the vector
estimate will coincide with the usual cardinality.
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Fuzzy Cardinality

We will find the remaining values µṽS(x̃) (k) for k >
⌊∑

x̃∈Sx̃
µx̃(S)

⌋
using the following threshold rule.

Let S1, S2, S3 ∈ {L,M,H} be three different classes of estimates such
that µx̃i

(S1) > µx̃i
(S2) ≥ µx̃i

(S3).

Then we will call the estimate x̃i the 1st level estimate for the class
S1, the 2nd level for the class S2 and the 3rd for the class S3.

We will order all values µx̃i
(S) = qi, i = 1, . . . , n in ascending order of

level numbers for a fixed class S:

q
(1)
i1
, . . . , q

(1)
ik
, q

(2)
ik+1, . . . , q

(2)
ir
, q

(3)
ir+1, . . . , q

(3)
in

(the superscript is the level number).
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Fuzzy Cardinality

Then we get for the 1st level values, according to condition 1):

µṽS(x̃) (p1) = 1, where p1 :=
⌊
q
(1)
i1

+ . . .+ q
(1)
ik

⌋
. If there are no 1st level

estimates, then we assume p1 = 0.

If there are quite a lot of large 2nd level values, then this means that
the values of the FC membership function will be quite large for
cardinalities greater than p1. For example, the following threshold
procedure may be proposed.

If p2 =
⌊{
q
(1)
i1

+ . . .+ q
(1)
ik

}
+ q

(2)
ik+1 + . . .+ q

(2)
ir

⌋
≥ 1, then

µṽS(x̃) (p1 + 1) = . . . = µṽS(x̃) (p1 + p2) = m2, where m2 ∈ (0, 1). Here
{ } is the fractional part of the number.

The values of the 3rd level are taken into account in the same way. If

p3 =
⌊{{

q
(1)
i1

+ . . .+ q
(1)
ik

}
+ q

(2)
ik+1 + . . .+ q

(2)
ir

}
+ q

(3)
ir+1 + . . .+ q

(3)
in

⌋
≥

1, then we will increase by m3 the membership function µṽS(x̃) for the
values of the argument p1 + 1, . . . , p1 + p3, where
0 < m3 < min{m2, 1−m2}.
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Fuzzy Cardinality

Example

Let the vector x̃ = (x̃1, . . . , x̃5) from 5 fuzzy estimates be given, where
x̃i = (µx̃i

(L), µx̃i
(M), µx̃i

(H)), i = 1, . . . , 5 and

x̃1 = (0.5, 0.6, 1), x̃2 = (0.3, 0.5, 1),

x̃3 = (0.5, 1, 0.4), x̃4 = (1, 0.8, 0.3), x̃5 = (1, 0.5, 0.2).

Then we will get the following results of calculating the values of
the FC membership function for each class

ṽL(x̃) = (0, 0, 1,m3, 0, 0), ṽM (x̃) = (0, 1,m2,m2, 0, 0),

ṽH(x̃) = (0, 0, 1, 0, 0, 0).

Here m2, m3 are some threshold values that satisfy the conditions
m2 ∈ (0, 1), 0 < m3 < min{m2, 1−m2}.
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Comparison of FC

Comparison of FC and Ranking of Alternatives

Let Vn be the set of all FCs for n fuzzy estimates.

To apply the lexicographic rule for ranking a set of vector fuzzy
alternatives {x̃} with respect to FC ṽ(x̃) = (ṽL(x̃), ṽM (x̃), ṽH(x̃)), it is
necessary to use some rule for ordering fuzzy sets. This can be done
using some defuzzification function F : Vn → R.

We will assume that the FCs of class S estimates are in the relation
ṽS (x̃) ≺ ṽS (ỹ) for two alternatives x̃ and ỹ if F (ṽS (x̃)) < F (ṽS (ỹ))
and are equal ṽS (x̃) ∼ ṽS (ỹ) if F (ṽS (x̃)) = F (ṽS (ỹ)).

For example, if we use center of gravity

G (ṽS(x̃)) =

n∑
i=0

iµṽS(x̃)(i)

/
n∑

i=0

µṽS(x̃)(i)

as the defuzzification function, we get for the example above:
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Comparison of FC

G (ṽL(x̃)) =
2 + 3m3

1 +m3
, G (ṽM (x̃)) =

1 + 5m2

1 + 2m2
, G (ṽH(x̃)) = 2.

For any acceptable threshold values m2 and m3, we have
G (ṽM (x̃)) < G (ṽH(x̃)) < G (ṽL(x̃)). Therefore, the ranking
ṽM (x̃) ≺ ṽH(x̃) ≺ ṽL(x̃) is correct.

Another way to compare the FC of sets of fuzzy estimates is to use the
same lexicographic rule.
Let ṽS (x̃) = (a0, . . . , an), ṽS (ỹ) = (b0, . . . , bn).

Then we will assume that ṽS (x̃) ≺ ṽS (ỹ) if a0 < b0 or
∃k ∈ {0, . . . , n− 1} : a0 = b0, . . . , ak = bk, ak+1 < bk+1.

Otherwise, we assume that ṽS (x̃) ∼ ṽS (ỹ).
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Comparison of FC

Now, the threshold aggregation rule for two alternatives x̃ and ỹ will
be as follows:

φ (x̃) > φ (ỹ) ⇔ ṽL (x̃) ≺ ṽL (ỹ)

or ṽL (x̃) ∼ ṽL (ỹ) , ṽM (x̃) ≺ ṽM (ỹ)

or ṽL (x̃) ∼ ṽL (ỹ) , ṽM (x̃) ∼ ṽM (ỹ) , ṽH (x̃) ≺ ṽH (ỹ) .
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Numerical Example

Numerical Example

Consider an example of ranking articles of conferences in the
conference management system, such as EasyChair.

This system uses a septennial scoring system
xi ∈ {−3,−2,−1, 0, 1, 2, 3}, corresponding to the recommendations
”strong reject”, ”reject”, ”weak reject”, ”borderline paper”, ”weak
accept”, ”accept”, ”strong accept”. In addition, the reviewer gives an
assessment on a five-fold scale (0.2 – ”none”, 0.4 – ”low”, 0.6 –
”medium”, 0.8 – ”high”, 1 – ”expert”) about the degree of confidence
in the correctness of his decision: λi ∈ {0.2, 0.4, 0.6, 0.8, 1}.
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Numerical Example

Point data
{
(z

(k)
i , λ

(k)
i )

}5

i=1
of n = 5 reviewers regarding 4 articles are

presented in Table (i is the reviewer’s index, k is the article’s index,
k = 1, . . . , 4).

paper 1 paper 2 paper 3 paper 4

rev. 1 (2, 0.8) (2, 1) (1, 0.8) (0, 0.6)
rev. 2 (1, 1) (2, 0.8) (2, 0.6) (1, 0.4)
rev. 3 (0, 0.8) (0, 0.6) (−1, 0.6) (1, 1)
rev. 4 (3, 0.4) (−1, 0.4) (0, 0.6) (2, 0.2)
rev. 5 (2, 0.6) (1, 0.6) (1, 1) (2, 1)
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Numerical Example

Let’s transform each pair (z, λ) into a three-grade fuzzy estimate
x̃ = x̃(z, λ) = (µx̃(L), µx̃(M), µx̃(H)) using the following blur rule:

if z ∈ H = {1, 2, 3} (high estimates), then x̃ =
(

λ
2z+λ ,

λ
z+λ , λ

)
;

if z ∈ L = {−3,−2,−1} (low estimates), then x̃ =
(
λ, λ

|z|+λ ,
λ

2|z|+λ

)
;

if z ∈M = {0} (medium estimate), then x̃ =
(

λ
1+2λ , λ,

λ
1+2λ

)
.
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Numerical Example

The fuzzy estimates obtained in this way are presented in Table.

paper 1 paper 2 paper 3 paper 4

rev. 1
(
1
6
, 2
7
, 4
5

) (
1
5
, 1
3
, 1

) (
2
7
, 4
9
, 4
5

) (
3
11

, 3
5
, 3
11

)
rev. 2

(
1
3
, 1
2
, 1

) (
1
6
, 2
7
, 4
5

) (
3
23

, 3
13

, 3
5

) (
1
6
, 2
7
, 2
5

)
rev. 3

(
4
13

, 4
5
, 4
13

) (
3
11

, 3
5
, 3
11

) (
3
5
, 3
8
, 3
13

) (
1
3
, 1
2
, 1

)
rev. 4

(
1
16

, 2
17

, 2
5

) (
2
5
, 2
7
, 1
6

) (
3
11

, 3
5
, 3
11

) (
1
21

, 1
11

, 1
5

)
rev. 5

(
3
23

, 3
13

, 3
5

) (
3
13

, 3
8
, 3
5

) (
1
3
, 1
2
, 1

) (
1
5
, 1
3
, 1

)
ṽL

(k) (1,m3, 0, 0, 0, 0) (1,m3, 0, 0, 0, 0) (1,m3, 0, 0, 0, 0) (1,m3, 0, 0, 0, 0)

ṽM
(k) (1,m2, 0, 0, 0, 0) (1,m3, 0, 0, 0, 0) (1,m2,m2, 0, 0, 0) (1,m2, 0, 0, 0, 0)

ṽH
(k) (0, 0, 1,m2, 0, 0) (0, 0, 1, 0, 0, 0) (0, 0, 1, 0, 0, 0) (0, 0, 1, 0, 0, 0)

G(k)
(

m3
1+m3

, m2
1+m2

, 2+3m2
1+m2

) (
m3

1+m3
, m3
1+m3

, 2
) (

m3
1+m3

, 3m2
1+2m2

, 2
) (

m3
1+m3

, m2
1+m2

, 2
)

v(k) (0, 1, 4) (1, 1, 3) (1, 1, 3) (0, 1, 4)
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Numerical Example

Using the method described above, we will find the FC of all reviewer
ratings for all classes and for all articles.

We will obtain the following ranking of articles after lexicographic
comparison of vectors G(k), k = 1, . . . , 4:

φ
(
x̃(2)

)
> φ

(
x̃(4)

)
> φ

(
x̃(1)

)
> φ

(
x̃(3)

)
.

The same ranking will be obtained if the cardinalities of gradations are
compared lexicographically.

If we take into account only the three-grade recommendations of
reviewers (L = {−3,−2,−1}, M = {0}, H = {1, 2, 3}) and do not take
into account the degree of confidence, we obtain the following vectors
of cardinality of assessments v(k) =

(
vL(x

(k)), vM (x(k)), vH(x(k))
)
for

each k-article. Then the ranking of these articles will be as follows:

φ(x(1)) = φ(x(4)) > φ(x(2)) = φ(x(3)).
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Numerical Example

The main difference in the results of the new and non-fuzzy approaches
is the rearrangement of alternatives x(1) and x(2). The alternative x(1)

will be better than the x(2) under non-blurred TA because the x(2) has
one low score, while the x(1) has no low scores.

But a low score in the alternative x(2) has a low degree of confidence.
Therefore, it has little effect on the cardinality of low estimates under
fuzzy TA.
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Summary and Conclusion

Summary and Conclusion

A new approach to TA and ranking of vector alternatives specified
by fuzzy evaluations of criteria on a three-graded base set
is proposed. This approach is based on calculating and comparing
the FC of sets of estimates for each gradation for all criteria and
for each alternative;

The general properties that the FC of a set of fuzzy estimators
must satisfy are discussed;

The threshold procedure for constructing the FC of a set of fuzzy
estimates is considered;

The development of axiomatics for fuzzy threshold aggregation is
one of the possible directions for future research.
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