Threshold Aggregation of Fuzzy Data Using Fuzzy Cardinalities

Alexander Lepskiy

National Research University – Higher School of Economics, Moscow, Russia

INFUS 2024, July 16–18, 2024, Çanakkale, Turkey

Research Motivation

- Let us consider the classical problem of aggregation of individual preferences. There are many rules for such aggregation.
- In some cases, aggregation rules should be **non-compensatory**. This implies that low scores on one criterion cannot be compensated for by high scores on others.
- The so-called **threshold aggregation** (TA) rule [Aleskerov et al 2010, Aleskerov & Yakuba 2007] is one of the popular aggregation rules that has a non-compensatory property.
- In some cases, the characteristics of alternatives may be inaccurate. Then the problem of generalizing the TA rule to the case of inaccurate data is relevant.

Outline of Presentation

- Threshold Aggregation (TA) Problem with Accurate Data;
- TA Problem with Inaccurate Data:
- The procedure for Finding the Fuzzy Cardinality (FC) of a Set of Three-Grade Fuzzy Estimates;
- Comparison of FC and Ranking of Alternatives;
- Numerical Example;
- Summary and Conclusion.

TA Problem with Accurate Data

The problem of ranking alternatives of a set X of evaluated by n criteria in a three-gradation scale is being considered. The alternatives are represented by vectors: $\mathbf{x} = (x_1, \ldots, x_n)$, where $x_i \in \{1, 2, 3\}$. It is required to find an operator $\varphi_n = \varphi : X \to \mathbb{R}$ that satisfies the conditions [Aleskerov & Yakuba 2007]:

1) Pareto-domination:

if $\mathbf{x}, \mathbf{y} \in X$ and $x_i > y_i$ $\forall i, \exists s : x_s > y_s$, then $\varphi(\mathbf{x}) > \varphi(\mathbf{y})$;

- 2) pairwise compensability of criteria: if $\mathbf{x}, \mathbf{y} \in X$ and $v_k(\mathbf{x}) = v_k(\mathbf{y})$ $k = 1, 2$, then $\varphi(\mathbf{x}) = \varphi(\mathbf{y})$, where $v_k(\mathbf{x}) = |\{i : x_i = k\}|$ is the number of estimates of k in the alternative **x**, $k = 1, 2, 3$;
- 3) threshold noncompensability:

$$
\varphi(\underbrace{2,\ldots,2}_{n}) > \varphi(\mathbf{x}) \,\,\forall \mathbf{x} \in X: \,\exists s: \,x_s = 1;
$$

4) the reduction axiom:

if \forall **x**, **y** ∈ *X* ∃*s* : $x_s = y_s$, then $\varphi_n(\mathbf{x}) > \varphi_n(\mathbf{y}) \Leftrightarrow \varphi_{n-1}(\mathbf{x}_{-s}) > \varphi_{n-1}(\mathbf{y}_{-s}),$ where $\mathbf{x}_{-s} = (x_1, \ldots, x_{s-1}, x_{s+1}, \ldots, x_n).$

It is shown that the lexicographic aggregation rule is a solution to this problem:

> $\varphi(\mathbf{x}) > \varphi(\mathbf{y}) \Leftrightarrow$ $v_1(\mathbf{x}) < v_1(\mathbf{v})$ or

 $\exists j \in \{1,2\} : v_k(\mathbf{x}) = v_k(\mathbf{y}) \quad \forall k \leq j \text{ and } v_{k+1}(\mathbf{x}) < v_{k+1}(\mathbf{y}).$

This problem was generalized in [Aleskerov et al 2010] to the case of m -gradation scales, $m > 3$.

A. Lepskiy (HSE) [Threshold Aggregation](#page-0-0) INFUS 2024 5/25

TA Problem with Inaccurate Data

There are two main approaches to generalizing TA in the case of inaccurate data:

- development of axiomatics and aggregation rules based on this new axiomatics;
- finding an analogue of the cardinality vector of estimates for inaccurate data.

An analogue of the cardinality vector of estimates for inaccurate data can be found in two ways:

- finding the vector of scalar cardinalities of a set of inaccurate estimates;
- finding the inaccurate cardinality function of a set of inaccurate estimates.

The nature of inaccuracies in data can be different: interval, fuzzy, probabilistic, etc.

Bellow we will only talk about fuzzy models of data inaccuracy.

Let the alternatives be represented by n -dimensional vectors $\widetilde{\mathbf{x}} = (\widetilde{x}_1, \dots, \widetilde{x}_n)$ of fuzzy sets. Each fuzzy set \widetilde{x}_i is defined on a
three gradation base set $[I, M, H]$ and has a membership function three-gradation base set $\{L, M, H\}$ and has a membership function $\mu_{\tilde{x}_i}$.
We will represent a fuggy set \tilde{x}_i as a vector of values of its membership. We will represent a fuzzy set \tilde{x}_i as a vector of values of its membership function: $\widetilde{x}_i = (\mu_{\widetilde{x}_i}(L), \mu_{\widetilde{x}_i}(M), \mu_{\widetilde{x}_i}(H)).$

The first approach (let's call it scalar [Lepskiy 2023]) is based on calculating a certain measure of proximity $F_S(\tilde{x}_i) = \psi(d(\tilde{x}_i, S_0))$ between all fuzzy estimates \widetilde{x}_i of a certain gradation $S \in \{L, M, H\}$ and the reference estimate S_0 for a given gradation.

Then the value

$$
v_S\left(\widetilde{\mathbf{x}}\right) = \sum_{\widetilde{x_i} \in S} F_S\left(\widetilde{x_i}\right), \ \ S \in \{L, M, H\}
$$

characterizes the cardinality of the set of fuzzy estimates of the class S.

Now I'll consider another approach, which is based on calculating the fuzzy cardinality (FC) of a set of fuzzy estimates of each gradation.

The procedure for Finding the FC of a Set of Three-Grade Fuzzy Estimates

Fuzzy cardinality (FC) $\widetilde{v_S}(\widetilde{\mathbf{x}})$ will be defined on the base set $\{0, \ldots, n\}$ (*n* is the number of criteria). The FC membership function $\mu_{\widetilde{v}\widetilde{\mathsf{S}}(\widetilde{\mathbf{x}})}$ of the class $S \in \{L, M, H\}$ must satisfy the following conditions:

- 1) $\mu_{\widetilde{v}_S(\widetilde{\mathbf{x}})}(k) = 1 \Leftrightarrow k = \Big[\sum_{\alpha}$ $\left[\begin{array}{c} \widetilde{x} \in S_{\widetilde{\mathbf{x}}} \mu_{\widetilde{x}}(S) \end{array}\right],$ where $\lfloor \ \rfloor$ is rounding down, $S_{\tilde{\mathbf{x}}}$ is a set of estimates of class S for which the maximum membership function is achieved;
- 2) $\mu_{\widetilde{v}_S(\widetilde{\mathbf{x}})}(k) = 0$, if $k < \left[\sum_{k=1}^{\infty} \right]$ $\widetilde{\mathbf{x}} \in S_{\widetilde{\mathbf{x}}} \mu_{\widetilde{\mathbf{x}}}(S)$. This condition means that the cardinality of the set of estimates for a class S cannot be less than the number of estimates that obviously belong to this class.

A. Lepskiy (HSE) [Threshold Aggregation](#page-0-0) INFUS 2024 9/25

Desirable properties of FC would also be the following. Let Fuz is a certain degree of fuzziness of the set and

$$
Fuz\left(\widetilde{\mathbf{x}}\right)=\left(Fuz\left(\widetilde{x_1}\right),\ldots,Fuz\left(\widetilde{x_n}\right)\right).
$$

For $\mathbf{a} = (a_1, \ldots, a_n)$ and $\mathbf{b} = (b_1, \ldots, b_n)$ vectors, comparison $\mathbf{a} > \mathbf{b}$ means that $a_1 \geq b_1, \ldots, a_n \geq b_n$.

- 3) if $Fuz(\widetilde{\mathbf{x}}) \geq Fuz(\widetilde{\mathbf{y}})$, then $Fuz(\widetilde{v_S}(\widetilde{\mathbf{x}})) \geq Fuz(\widetilde{v_S}(\widetilde{\mathbf{y}}))$ $\forall S \in \{L, M, H\}.$
- 4) if $Fuz(\tilde{\mathbf{x}}) = \mathbf{0}$, then $\widetilde{v_s}(\tilde{\mathbf{x}}) = v_s(\mathbf{x}) \ \forall S \in \{L, M, H\}.$

The last condition means that if all fuzzy estimates are non-fuzzy (i. e. $\mu_{\tilde{x}_i}(S) \in \{0,1\} \forall S \in \{L, M, H\}$), then the FC of the vector estimate will coincide with the usual cardinality.

A. Lepskiy (HSE) [Threshold Aggregation](#page-0-0) INFUS 2024 10/25

We will find the remaining values $\mu_{\widetilde{v}_S(\widetilde{\mathbf{x}})}(k)$ for $k > \left[\sum_{i=1}^n \mathbb{I}_{v_{k+1}}(k)\right]$ $\widetilde{\mathbf{x}} \in S_{\widetilde{\mathbf{x}}} \mu_{\widetilde{\mathbf{x}}}(S)$ using the following threshold rule.

Let $S_1, S_2, S_3 \in \{L, M, H\}$ be three different classes of estimates such that $\mu_{\widetilde{x}_i}(S_1) > \mu_{\widetilde{x}_i}(S_2) \geq \mu_{\widetilde{x}_i}(S_3)$.

Then we will call the estimate \tilde{x}_i the 1^{st} level estimate for the class S_t , the 2^{nd} level for the class S_t , and the 2^{rd} for the class S_1 , the 2^{nd} level for the class S_2 and the 3^{rd} for the class S_3 .

We will order all values $\mu_{\tilde{x}_i}(S) = q_i, i = 1, \ldots, n$ in ascending order of level numbers for a fixed alone S. level numbers for a fixed class S:

$$
q^{(1)}_{i_1}, \ldots, q^{(1)}_{i_k}, q^{(2)}_{i_k+1}, \ldots, q^{(2)}_{i_r}, q^{(3)}_{i_r+1}, \ldots, q^{(3)}_{i_n}
$$

(the superscript is the level number).

Then we get for the 1^{st} level values, according to condition 1): $\mu_{\widetilde{v}_S(\widetilde{\mathbf{x}})}(p_1) = 1$, where $p_1 := \left[q_{i_1}^{(1)} \right]$ $q_{i_1}^{(1)} + \ldots + q_{i_k}^{(1)}$ $\begin{bmatrix} 1 \\ i_k \end{bmatrix}$. If there are no 1^{st} level estimates, then we assume $p_1 = 0$.

If there are quite a lot of large 2^{nd} level values, then this means that the values of the FC membership function will be quite large for cardinalities greater than p_1 . For example, the following threshold procedure may be proposed.

If $p_2 = \left| \left\{ q_{i_1}^{(1)} \right. \right.$ $q_{i_1}^{(1)} + \ldots + q_{i_k}^{(1)}$ $\begin{pmatrix} 1 \\ i_k \end{pmatrix}$ + $q_{i_k+1}^{(2)}$ + ... + $q_{i_r}^{(2)}$ $\left| \frac{1}{i_r} \right| \geq 1$, then $\mu_{\widetilde{v}_S(\widetilde{\mathbf{x}})}(p_1+1) = \ldots = \mu_{\widetilde{v}_S(\widetilde{\mathbf{x}})}(p_1+p_2) = m_2$, where $m_2 \in (0,1)$. Here { } is the fractional part of the number.

The values of the 3^{rd} level are taken into account in the same way. If $p_3 = \left| \{ \left\{ q_{i_1}^{(1)} \right\}$ $i_1^{(1)} + \ldots + q_{i_k}^{(1)}$ $\begin{pmatrix} 1 \\ i_k \end{pmatrix}$ + $q_{i_k+1}^{(2)}$ + ... + $q_{i_r}^{(2)}$ ${q_{i_r}^{(2)} \brace + q_{i_r+1}^{(3)} + \ldots + q_{i_n}^{(3)}}$ $\left|\frac{(3)}{i_n}\right| \geq$ 1, then we will increase by m_3 the membership function $\mu_{\widetilde{v}_S}(\widetilde{\mathbf{x}})$ for the values of the argument $p_1 + 1, \ldots, p_1 + p_3$, where $0 < m_3 < \min\{m_2, 1 - m_2\}.$

Example

Let the vector $\widetilde{\mathbf{x}} = (\widetilde{x_1}, \ldots, \widetilde{x_5})$ from 5 fuzzy estimates be given, where $\widetilde{x}_i = (\mu_{\widetilde{x}_i}(L), \mu_{\widetilde{x}_i}(M), \mu_{\widetilde{x}_i}(H)), i = 1, \ldots, 5$ and

$$
\widetilde{x_1} = (0.5, 0.6, 1), \ \widetilde{x_2} = (0.3, 0.5, 1),
$$

 $\widetilde{x_3} = (0.5, 1, 0.4), \ \widetilde{x_4} = (1, 0.8, 0.3), \ \widetilde{x_5} = (1, 0.5, 0.2).$

Then we will get the following results of calculating the values of the FC membership function for each class

> $\widetilde{v_L}(\widetilde{\mathbf{x}}) = (0, 0, 1, m_3, 0, 0), \ \ \widetilde{v_M}(\widetilde{\mathbf{x}}) = (0, 1, m_2, m_2, 0, 0),$ $\widetilde{v_H}(\widetilde{\mathbf{x}}) = (0, 0, 1, 0, 0, 0).$

Here m_2 , m_3 are some threshold values that satisfy the conditions $m_2 \in (0, 1), 0 < m_3 < \min\{m_2, 1 - m_2\}.$

Comparison of FC and Ranking of Alternatives

Let \mathcal{V}_n be the set of all FCs for *n* fuzzy estimates.

To apply the lexicographic rule for ranking a set of vector fuzzy alternatives $\{\widetilde{\mathbf{x}}\}$ with respect to $\overline{\mathrm{FC}}\ \widetilde{\mathbf{v}}(\widetilde{\mathbf{x}}) = (\widetilde{v}_L(\widetilde{\mathbf{x}}), \widetilde{v}_M(\widetilde{\mathbf{x}}), \widetilde{v}_H(\widetilde{\mathbf{x}}))$, it is necessary to use some rule for ordering fuzzy sets. This can be done using some defuzzification function $F: \mathcal{V}_n \to \mathbb{R}$.

We will assume that the FCs of class S estimates are in the relation $\widetilde{v}_S(\widetilde{\mathbf{x}}) \prec \widetilde{v}_S(\widetilde{\mathbf{y}})$ for two alternatives $\widetilde{\mathbf{x}}$ and $\widetilde{\mathbf{y}}$ if $F(\widetilde{v}_S(\widetilde{\mathbf{x}})) < F(\widetilde{v}_S(\widetilde{\mathbf{y}}))$ and are equal $\widetilde{v_S}(\widetilde{\mathbf{x}}) \sim \widetilde{v_S}(\widetilde{\mathbf{y}})$ if $F(\widetilde{v_S}(\widetilde{\mathbf{x}})) = F(\widetilde{v_S}(\widetilde{\mathbf{y}})).$

For example, if we use center of gravity

$$
G(\widetilde{v_S}(\widetilde{\mathbf{x}})) = \sum_{i=0}^{n} i\mu_{\widetilde{v_S}(\widetilde{\mathbf{x}})}(i) / \sum_{i=0}^{n} \mu_{\widetilde{v_S}(\widetilde{\mathbf{x}})}(i)
$$

as the defuzzification function, we get for the example above:

$$
G\left(\widetilde{v_L}(\widetilde{\mathbf{x}})\right) = \frac{2 + 3m_3}{1 + m_3}, \ \ G\left(\widetilde{v_M}(\widetilde{\mathbf{x}})\right) = \frac{1 + 5m_2}{1 + 2m_2}, \ \ G\left(\widetilde{v_H}(\widetilde{\mathbf{x}})\right) = 2.
$$

For any acceptable threshold values m_2 and m_3 , we have $G(\widetilde{v_M}(\widetilde{\mathbf{x}})) < G(\widetilde{v_H}(\widetilde{\mathbf{x}})) < G(\widetilde{v_L}(\widetilde{\mathbf{x}}))$. Therefore, the ranking $\widetilde{v_M}(\widetilde{\mathbf{x}}) \prec \widetilde{v_H}(\widetilde{\mathbf{x}}) \prec \widetilde{v_L}(\widetilde{\mathbf{x}})$ is correct.

Another way to compare the FC of sets of fuzzy estimates is to use the same lexicographic rule.

Let
$$
\widetilde{v_S}(\widetilde{\mathbf{x}}) = (a_0, \ldots, a_n), \widetilde{v_S}(\widetilde{\mathbf{y}}) = (b_0, \ldots, b_n).
$$

Then we will assume that $\widetilde{v}_S(\widetilde{\mathbf{x}}) \prec \widetilde{v}_S(\widetilde{\mathbf{y}})$ if $a_0 < b_0$ or $\exists k \in \{0, \ldots, n-1\} : a_0 = b_0, \ldots, a_k = b_k, a_{k+1} < b_{k+1}.$

Otherwise, we assume that $\widetilde{v_S}(\widetilde{\mathbf{x}}) \sim \widetilde{v_S}(\widetilde{\mathbf{v}})$.

Now, the threshold aggregation rule for two alternatives $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ will be as follows:

$$
\varphi(\widetilde{\mathbf{x}}) > \varphi(\widetilde{\mathbf{y}}) \Leftrightarrow \qquad \widetilde{v_L}(\widetilde{\mathbf{x}}) \prec \widetilde{v_L}(\widetilde{\mathbf{y}})
$$

or $\widetilde{v_L}(\widetilde{\mathbf{x}}) \sim \widetilde{v_L}(\widetilde{\mathbf{y}}), \ \widetilde{v_M}(\widetilde{\mathbf{x}}) \prec \widetilde{v_M}(\widetilde{\mathbf{y}})$
or $\widetilde{v_L}(\widetilde{\mathbf{x}}) \sim \widetilde{v_L}(\widetilde{\mathbf{y}}), \ \widetilde{v_M}(\widetilde{\mathbf{x}}) \sim \widetilde{v_M}(\widetilde{\mathbf{y}}), \ \widetilde{v_H}(\widetilde{\mathbf{x}}) \prec \widetilde{v_H}(\widetilde{\mathbf{y}}).$

Numerical Example

Consider an example of ranking articles of conferences in the conference management system, such as EasyChair.

This system uses a septennial scoring system $x_i \in \{-3, -2, -1, 0, 1, 2, 3\}$, corresponding to the recommendations "strong reject", "reject", "weak reject", "borderline paper", "weak accept", "accept", "strong accept". In addition, the reviewer gives an assessment on a five-fold scale $(0.2 - "none", 0.4 - "low", 0.6 -$ "medium", $0.8 -$ " high", $1 -$ " expert") about the degree of confidence in the correctness of his decision: $\lambda_i \in \{0.2, 0.4, 0.6, 0.8, 1\}.$

A. Lepskiy (HSE) [Threshold Aggregation](#page-0-0) INFUS 2024 17/25

Point data $\left\{ \binom{z^{(k)}}{i} \right\}$ $\left\{ \lambda_i^{(k)},\lambda_i^{(k)}\right\} \right\}^5_{i}$ of $n = 5$ reviewers regarding 4 articles are presented in Table (i is the reviewer's index, k is the article's index, $k = 1, \ldots, 4$.

Let's transform each pair (z, λ) into a three-grade fuzzy estimate $\tilde{x} = \tilde{x}(z, \lambda) = (\mu_{\tilde{x}}(L), \mu_{\tilde{x}}(M), \mu_{\tilde{x}}(H))$ using the following blur rule: if $z \in H = \{1, 2, 3\}$ (high estimates), then $\widetilde{x} = \left(\frac{\lambda}{2z+1}\right)$ $\frac{\lambda}{2z+\lambda}, \frac{\lambda}{z+}$ $\frac{\lambda}{z+\lambda}, \lambda\Big);$ if $z \in L = \{-3, -2, -1\}$ (low estimates), then $\widetilde{x} = \left(\lambda, \frac{\lambda}{|z| + \lambda}, \frac{\lambda}{2|z|}\right)$ $\frac{\lambda}{2|z|+\lambda}\Big);$ if $z \in M = \{0\}$ (medium estimate), then $\widetilde{x} = \left(\frac{\lambda}{1+i}\right)$ $\frac{\lambda}{1+2\lambda}, \lambda, \frac{\lambda}{1+2\lambda}\Big).$

Using the method described above, we will find the FC of all reviewer ratings for all classes and for all articles.

We will obtain the following ranking of articles after **lexicographic** comparison of vectors $\mathbf{G}^{(k)}$, $k = 1, \ldots, 4$:

$$
\varphi\left(\widetilde{\mathbf{x}}^{(2)}\right) > \varphi\left(\widetilde{\mathbf{x}}^{(4)}\right) > \varphi\left(\widetilde{\mathbf{x}}^{(1)}\right) > \varphi\left(\widetilde{\mathbf{x}}^{(3)}\right).
$$

The same ranking will be obtained if the cardinalities of gradations are compared lexicographically.

If we take into account only the three-grade recommendations of reviewers $(L = \{-3, -2, -1\}, M = \{0\}, H = \{1, 2, 3\})$ and do not take into account the degree of confidence, we obtain the following vectors of cardinality of assessments $\mathbf{v}^{(k)} = (v_L(\mathbf{x}^{(k)}), v_M(\mathbf{x}^{(k)}), v_H(\mathbf{x}^{(k)}))$ for each k-article. Then the ranking of these articles will be as follows:

$$
\varphi(\mathbf{x}^{(1)}) = \varphi(\mathbf{x}^{(4)}) > \varphi(\mathbf{x}^{(2)}) = \varphi(\mathbf{x}^{(3)}).
$$

A. Lepskiy (HSE) [Threshold Aggregation](#page-0-0) INFUS 2024 21/25

The main difference in the results of the new and non-fuzzy approaches is the rearrangement of alternatives $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$. The alternative $\mathbf{x}^{(1)}$ will be better than the $\mathbf{x}^{(2)}$ under non-blurred TA because the $\mathbf{x}^{(2)}$ has one low score, while the $\mathbf{x}^{(1)}$ has no low scores.

But a low score in the alternative $x^{(2)}$ has a low degree of confidence. Therefore, it has little effect on the cardinality of low estimates under fuzzy TA.

Summary and Conclusion

- A new approach to TA and ranking of vector alternatives specified by fuzzy evaluations of criteria on a three-graded base set is proposed. This approach is based on calculating and comparing the FC of sets of estimates for each gradation for all criteria and for each alternative;
- The general properties that the FC of a set of fuzzy estimators must satisfy are discussed;
- The threshold procedure for constructing the FC of a set of fuzzy estimates is considered;
- The development of axiomatics for fuzzy threshold aggregation is one of the possible directions for future research.

References

- Aleskerov, F., Chistyakov, V., Kalyagin, V.: Social threshold aggregations. Social Choice Welfare 35, 627–646 (2010)
- Aleskerov, F.T., Yakuba, V.I.: A Method for Threshold Aggregation of Three-Grade Rankings. Doklady Mathematics 75(2), 322–324 (2007)
- Ħ Lepskiy, A.: Fuzzy Threshold Aggregation. In: Kahraman, C., Sari, I.U., Oztaysi, B., Cebi, S., Cevik Onar, S., Tolga, A.C¸ . (eds.) Intelligent and Fuzzy Systems. INFUS 2023. LNNS, vol. 758, pp. 69–76. Springer, Cham (2023).

Thanks for you attention

alepskiy@hse.ru https://www.hse.ru/en/org/persons/10586209