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Research Motivation

Research Motivation

We will consider the problem of aggregating information and
ranking alternatives in the case of an ordinal scale. There are
several aggregation methods in such a scale [Aleskerov 1999].

It is desirable to consider the degree of inconsistency of
information coming from different sources, the degree of its
uncertainty, the reliability of these sources, when developing
aggregation rules. All these features are well modeled in the
Dempster – Shafer theory of evidence [Dempster 1967,
Shafer 1976].

But alternatives are considered on an unordered set in the classical
theory of evidence. Recently, evidential structures have also been
considered on ordered base sets, on preference structures [Zhang et
al 2018, Zhang et al 2021, Zhang & Deng 2021, Martin 2022].

We will consider the problem of ranking expert assessments in the
framework of the theory of evidence.
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the Theory of Evidence

Information from the Theory of Evidence

Let [Shafer 1976]:

T = {t1, ..., ts} be some finite set;

2T is the power set of T ;

m : 2T → [0, 1],
∑

A∈2T m(A) = 1, m(∅) = 0 is the basic belief
assignment (mass function);

A = {A} is the set of all focal elements, i. e. A ∈ A if m(A) > 0;

F = (A,m) is the body of evidence (BE);

F(T ) is the set of all BE on T ;

FA = ({A}, 1) is called categorical BE. In particular,
FT = ({T}, 1) is called vacuous BE;

an arbitrary BE F = (A,m) can be represented as
F =

∑
A∈Am(A)FA;

FαA = αFA + (1− α)FT , α ∈ (0, 1) is called simple BE;

the BE is said to be non-dogmatic if m(T ) > 0.
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the Theory of Evidence

We will consider BE on an ordered set T = {t1, ..., ts}, t1 < . . . < ts.
We will assume that only ordered sequential sets of elements from T
(i.e., sets of the form A = {ti, ti+1, . . . , ti+r} ⊆ T ) can be focal
elements. The set of all such subsets will be denoted by

(
2T
)
od
⊆ 2T .

The BE F = (A,m) can be transformed into the pignistic
probability BetF :

BetF (ti) =
∑

A∈A, ti∈A

m(A)

|A|
, i = 1, . . . , s.

The amount of ignorance of the information contained in the BE
F = (A,m) will be estimated using Deng’s entropy [Deng 2016]

DE(F ) = −
∑
A∈A

m(A)log2

(
m(A)

2|A| − 1

)
,

which is approximately equal to the sum of the Shannon entropy
−
∑

Am(A)log2m(A) and the measure of imprecision
∑

Am(A) |A|.
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General Scheme of Evidence-Based Ranking

General Scheme of Evidence-Based Ranking

Let X be a set of alternatives, which are represented by vectors
x = (x1, . . . , xn), where xi are scores on an ordinal scale
T = {t1, . . . , ts}, t1 < . . . < ts, which correspond to the terms: t1 –
“very low”, t2 – “low”, etc.

Let us assume that the elements hi are also known, given in an ordinal
or numerical scale, characterizing the degree of confidence of the DM in
the correctness of his decision regarding the estimate xi ∈ T .

It is necessary to aggregate information from experts and rank
alternatives. The proposed method consists of the following steps:

1 formation of BE of individual expert assessments, taking into
account information about their confidence;

2 aggregation of generated evidence corpora for each alternative
using combination rules from evidence theory;

3 ranking of aggregate estimates.
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General Scheme of Evidence-Based Ranking Formation of BE of Expert Assessments

Formation of BE of Expert Assessments

We will assign a simple BE to each assessment x ∈ T and the degree of
confidence h of the DM in the correctness of his decision:

Fx = µ(h)FA(x,h) + (1− µ(h))FT , (1)

where A(x, h) is the blur function of the value x ∈ T depending on the
confidence h of the estimate, µ(h) is the mass discounting function. We
will assume that µ(h) = h in the example below.

Information in the form of a coefficient h ∈ [0, 1] about the degree of
confidence of the DM in the correctness of his decision can be used to
blur the point estimate x ∈ T .
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General Scheme of Evidence-Based Ranking Formation of BE of Expert Assessments

Let’s assume that h = 0 corresponds to absolute uncertainty, h = 1
corresponds to absolute confidence in one’s decision. The lower the
degree of confidence, the greater should be the degree of blur.

In general, the blur function A(x, h) : T × [0, 1]→
(
2T
)
od

must satisfy
the following conditions:

1 A(x, 1) = {x} ∀x ∈ T ;

2 A(x, 0) = T ∀x ∈ T ;

3 A(x, h2) ⊆ A(x, h1) ∀x ∈ T if h1 ≤ h2;
4 A(tj , h) = {tj−p, . . . , tj , . . . , tj+r}, where p ≤ r if tj < tk and p ≥ r

if tj > tk.

Condition 4) means that the set A(x, h) have a greater bias towards
the neutral estimate than towards the “extreme” elements when the
element x ∈ T is blurred, if there is a neutral estimate tk ∈ T in the
rank scale T .
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General Scheme of Evidence-Based Ranking Entropy of a BE on an Ordered Set

Entropy of a BE on an Ordered Set

If there is a neutral estimate tk ∈ T in the rank scale T , then two
equally powerful focal sets A and B with the same masses will make
different contributions to the entropy depending on the location of
their elements relative to the neutral estimate. If the elements are
symmetrically located relative to the neutral estimate in the A, but not
in the B, then the contribution of the A to the final entropy must be
greater than the contribution of the B.

Let us introduce the index I(A) ∈ [Imin, Imax], which characterizes the
asymmetry of the arrangement of elements with respect to the neutral
estimate. Let A− = {t ∈ A : t < tk}, A+ = {t ∈ A : t > tk}. The index
I must satisfy the following conditions:

1 I(A) = Imin if A− = ∅ ∨A+ = ∅;
2 I(A′) ≤ I(A′′) if |A′| = |A′′| and ||A′+| − |A′−|| ≥ ||A′′+| − |A′′−||.
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General Scheme of Evidence-Based Ranking Entropy of a BE on an Ordered Set

For example, the index

I(A) =
2 min {|A−| , |A+|}
||A−| − |A+||+ 1

∈ [0, |A| − 1]

satisfies these conditions. It is easy to see that:

a) I(A) = Imin = 0⇔ A− = ∅ ∨A+ = ∅ (in particular I(A) = 0 if the
A is a singleton);

b) if A 6= ∅ and |A−| = |A+|, then I(A) = Imax = |A| − 1.

This index will be used to modify the Deng entropy

DEM(F ) = −
∑
A∈A

m(A)log2

(
m(A)

2|A|+I(A) − 1

)
.

In this case, the measure of average asymmetry
∑

A∈Am(A)I(A) is
approximately added to the Deng entropy. It is easy to see that
DEM(F ) ≥ DE(F ).
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General Scheme of Evidence-Based Ranking Aggregation of a BEs of Expert Assessments

Aggregation of a BEs of Expert Assessments

Further, all BEs Fxi corresponding to the vector of assessments
x = (x1, . . . , xn) are aggregated in accordance with some combination
rule ⊗R: F(T )× . . .×F(T )︸ ︷︷ ︸

n

→ F(T ). As a result, we get the BE

Fx =
n
⊗R
i=1

Fxi .

We will consider conjunctive rules (the Dempster rule, the Yager rule,
etc.). The non-normalized conjunctive rule for combining BEs

Fi = (Ai,mi), i = 1, . . . , n has the form F∩ =
n
⊗∩
i=1

Fi =
(
A ∪ {∅},m⋂),

where
m∩(A) =

∑
B1∩...∩Bn=A

m1(B1) . . .mn(Bn).
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General Scheme of Evidence-Based Ranking Aggregation of a BEs of Expert Assessments

The value

Con(F1, . . . , Fn) = m∩(∅) =
∑

B1∩...∩Bn=∅

m1(B1) . . .mn(Bn) ∈ [0, 1]

is a measure of the inconsistency of information provided by BEs. To
obtain a BE F = (A,m), it is necessary to redistribute the mass m∩(∅)
over other focal elements.

The uniform redistribution of mass m∩(∅) over all focal elements is
carried out in the classical Dempster rule ⊗D:

mD(A) =
1

1−m∩(∅)
m∩(A) if A 6= ∅ and mD(∅) = 0.

If m∩(∅) = 1 (absolute conflict), then Dempster’s rule does not apply.

The entire value of m∩(∅) is added to m∩(T ), increasing the weight of
”not knowing” in Yager’s rule ⊗Y :

mY (A) = m∩(A) if A 6= ∅, T, mY (∅) = 0, mY (T ) = m∩(T ) +m∩(∅).
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General Scheme of Evidence-Based Ranking Ranking of Aggregate Estimates

Ranking of Aggregate Estimates

Let {Fx}x∈X be a set of BEs; BetFx is the pignistic probability
corresponding to the BE Fx.

We will use the concept of an interval median
[
mex,mex

]
to rank

estimates {x} using the resulting BEs. The boundaries mex, mex of
this interval are defined as follows. Let us consider two sets

Ix=

{
tk :

k∑
i=1

BetFx(ti)≤
1

2
, BetFx(tk) 6= 0

}
, Ix=

{
tk :

s∑
i=k

BetFx(ti)≤
1

2
, BetFx(tk) 6= 0

}
.

Let ∆x = X\
(
Ix ∪ Ix

)
. Three cases are possible:

1) if |∆x| = 0, then we set mex = sup Ix, mex = inf Ix;

2) if |∆x| = 1, then we set mex = mex = t ∈ ∆x;

3) if |∆x| > 1, then either BetFx(t) = 0 ∀t ∈ ∆x and we set
mex = sup Ix, mex = inf Ix or there is a single element t0 ∈ ∆x:
BetFx(t0) > 0 and let mex = mex = t0 ∈ ∆x.
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General Scheme of Evidence-Based Ranking Ranking of Aggregate Estimates

Further, we will consider the set of vectors of ”point” medians

MX =
{

(mex)x∈X : mex ≤ mex ≤ mex,x ∈ X
}
.

Then we rank the alternatives X according to the ranking of these
medians for each fixed set of medians me = (mex)x∈X ∈ MX : a�meb
if mea > meb and a∼meb if mea = meb. As a result, we get a set of
particular rankings (preferences) on X.

The final ranking of alternatives is carried out by applying some
preference aggregation rule. A wide choice of such rules is provided by
social choice theory. For example, Borda’s rule can be used.
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Numerical Example

Numerical Example

Let us illustrate the proposed scheme for aggregating expert
assessments and ranking on the data of reviewing articles in the
EasyChair conference management system (https://easychair.org).

This system uses a seven-rank ordinal rating scale T = {t1, . . . , t7}.
These ranks ti, i = 1, . . . , 7 meet the recommendations (in ascending
order) ”strong reject”, ”reject”, ”weak reject”, ”borderline paper”,
”weak accept”, ”accept”, ”strong accept”. In addition, the reviewer
gives an assessment on a five-rank scale (h1 – ”none”, h2 – ”low”, h3 –
”medium”, h4 – ”high”, h5 – ”expert”) about the degree of confidence
in the correctness of his decision: h1 < . . . < h5. For simplicity, we will
assume that the degrees of confidence are given on a numerical scale by
the formula hj = 0.2j, j = 1, . . . , 5.
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Numerical Example

Point data
{(
x
(k)
r , h

(k)
r

)}3

r=1
of n = 3 reviewers regarding 4 papers

{a1, . . . , a4} are presented in Table (r is the index of the reviewer, k is

the index of the article), where x
(k)
r ∈ T .

paper a1 paper a2 paper a3 paper a4
reviewer 1 (t6, 0.8) (t6, 1) (t5, 0.8) (t4, 0.6)
reviewer 2 (t5, 1) (t5, 0.4) (t6, 0.6) (t5, 0.4)
reviewer 3 (t4, 0.8) (t5, 0.6) (t3, 0.6) (t5, 1)
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Numerical Example

Let us apply the procedure of blurring point estimates x
(k)
r taking into

account the degrees of confidence h
(k)
r . As a result, we get simple BE

(see Table of focal elements and their masses
(
A
(
x
(k)
r , h

(k)
r

)
, h

(k)
r

)
).

The blur functions themselves are not given due to their
cumbersomeness.

paper a1 paper a2 paper a3 paper a4
reviewer 1 ({t5, t6}, 0.8) ({t6}, 0.95) ({t4, t5}, 0.8) ({t3, t4, t5}, 0.6)
reviewer 2 ({t5}, 0.95) ({t3, t4, t5, t6}, 0.4) ({t5, t6, t7}, 0.6) ({t3, t4, t5, t6}, 0.4)
reviewer 3 ({t4}, 0.8) ({t4, t5, t6}, 0.6) ({t2, t3, t4}, 0.6) ({t5}, 0.95)
Con 0.79 0 0.36 0

The values of the measure of conflict Con(F1k, F2k, F3k) of assessments
of all reviewers for each article are given in the last line.
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Numerical Example

Let us apply the Dempster rule to aggregate the BEs of all reviewers for each

article. We get the following results Fk =
3
⊗D
r=1

Frk:

F1 = 0.038F{t4} + 0.914F{t5} + 0.038F{t5,t6} + 0.01FT ,

F2 = 0.95F{t6} + 0.03F{t4,t5,t6} + 0.008F{t3,t4,t5,t6} + 0.012FT ,

F3 = 0.3F{t4}+0.3F{t5}+0.2F{t4,t5}+0.075F{t2,t3,t4}+0.075F{t5,t6,t7}+0.05FT ,

F4 = 0.95F{t5} + 0.03F{t3,t4,t5} + 0.008F{t3,t4,t5,t6} + 0.012FT .

Pignistic probabilities BetFk
(ti) for BEs aggregated according to

Dempster’s rule are given in Table

t1 t2 t3 t4 t5 t6 t7 DEM
F1 0 0 0.004 0.04 0.934 0.022 0 0.73
F2 0 0 0.007 0.014 0.014 0.965 0 0.63
F3 0.008 0.032 0.032 0.432 0.432 0.032 0.032 3.67
F4 0 0 0.016 0.014 0.965 0.005 0 0.7

The values of the modified Deng entropy are given in the last column.
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Numerical Example

All medians of these distributions will be point and equal, respectively:
me1 = {t5}, me2 = {t6}, me3 = {t4}, me4 = {t5}. Therefore, the
ranking of articles will be as follows:

a2 �me a1 ∼me a4 �me a3.

Let’s compare this result with the linear convolution of the criteria.
We will assume that the ratings of the reviewers are given on a
numerical scale ti = i, i = 1, . . . , 7. Then the linear convolution of

criteria for each article with weights h
(k)
r , r = 1, 2, 3 will take the form

C(ak) =

3∑
r=1

h(k)r x(k)r .

We will get the following results for our data: C(a1) = 12.75,
C(a2) = 10.7, C(a3) = 9.4, C(a4) = 9.15. Thus, the ranking of articles
in this case will be as follows:

a1 � a2 � a3 � a4.
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Numerical Example

The difference in rankings can be explained by the fact that the
reviews a1 and a3 articles are highly conflicting. And this is taken into
account when aggregating with conjunctive rules. In addition, low
weight estimates significantly reduce the value of linear convolution.
While a small weight only ”blurs” the reviewer’s assessment during
evidence-based aggregation.
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Summary and Conclusion

Summary and Conclusion

an evidence-based procedure for aggregating and ranking expert
information given in an ordinal scale has been proposed;

the aggregation of BE of expert assessments is based on the use of
conjunctive rules of combining;

the ranking is based on the calculation of (possibly interval)
medians corresponding to the pignistic probabilities of the BEs;

the method demonstrated a certain stability of the result to the
choice of the type of conjunctive aggregation rule;

the proposed method does not underestimate expert estimates
with low confidence, but only blurs them more, unlike the method
of linear convolution of criteria;

the use of evidence theory aggregation rules makes it possible to
take into account the conflicting nature of expert assessments.
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