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Research Motivation

Research Motivation

Let us consider the classical problem of aggregation of individual
preferences. There are many rules for such aggregation.

In some cases, aggregation rules should be non-compensatory.
This implies that low scores on one criterion cannot be
compensated for by high scores on others.

The so-called threshold rule [Aleskerov et al 2010, Aleskerov &
Yakuba 2007] is one of the popular aggregation rules that has a
non-compensatory property.

In some cases, the characteristics of alternatives may be fuzzy.
Then the problem of generalizing the threshold aggregation rule to
the case of fuzzy data is relevant.

A. Lepskiy (HSE) Fuzzy Threshold Aggregation INFUS 2023 2 / 22



Outline of Presentation

Outline of Presentation

Non-Fuzzy Formulation of the Threshold Aggregation Problem;

The Problem of Threshold Aggregation with Fuzzy Data;

General Scheme of Threshold Fuzzy Ranking;

Formation of Fuzzy Estimates from Point Data;

Numerical Example;

Summary and Conclusion.

A. Lepskiy (HSE) Fuzzy Threshold Aggregation INFUS 2023 3 / 22



Non-Fuzzy the Threshold Aggregation Problem

Non-Fuzzy Formulation of the Threshold
Aggregation Problem

The problem of ranking alternatives of a set X of evaluated by n
criteria in a three-gradation scale is being considered. The
alternatives are represented by vectors: x = (x1, . . . , xn), where
xi ∈ {1, 2, 3}. It is required to find an operator φn = φ : X → R that
satisfies the conditions [Aleskerov & Yakuba 2007]:

1) Pareto-domination:
if x,y ∈ X and xi ≥ yi ∀i, ∃s : xs > ys, then φ(x) > φ(y);

2) pairwise compensability of criteria:
if x,y ∈ X and vk(x) = vk(y) k = 1, 2, then φ(x) = φ(y),
where vk(x) = |{i : xi = k}| is the number of estimates of k in the
alternative x, k = 1, 2, 3;

3) threshold noncompensability:
φ(2, . . . , 2︸ ︷︷ ︸

n

) > φ(x) ∀x ∈ X: ∃s : xs = 1;
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Non-Fuzzy the Threshold Aggregation Problem

4) the reduction axiom:
if ∀x,y ∈ X ∃s : xs = ys, then
φn(x) > φn(y) ⇔ φn−1(x−s) > φn−1(y−s),
where x−s = (x1, . . . , xs−1, xs+1, . . . , xn).

It is shown that the lexicographic aggregation rule is a solution to
this problem:

φ(x) > φ(y) ⇔

v1(x) < v1(y) or

∃j ∈ {1, 2} : vk(x) = vk(y) ∀k ≤ j and vk+1(x) < vk+1(y).

This problem was generalized in [Aleskerov et al 2010] to the case of
m-gradation scales, m ≥ 3.
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Threshold Aggregation with Fuzzy Data

Threshold Aggregation with Fuzzy Data

Let us now assume that the alternatives are represented by vectors of
fuzzy numbers x̃ = (x̃1, . . . , x̃n).

Each fuzzy number belongs to one of three classes: the low score
class L, the median score class M or the high score class H.

We will assume that the supports of fuzzy estimators are located on
the segments:

[−a, 0], a > 0 for estimators of the class L;

[0, a], a > 0 for estimators of the class H;

[−b, b], 0 < b < a for estimators of the class M .

Crisp numbers L0 = −a, M0 = 0 and H0 = a are reference elements.
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Threshold Aggregation with Fuzzy Data

We will consider a set of median positive estimates

M+ = {x̃ ∈M : d(x̃,M+
0 ) ≤ d(x̃,M−

0 )
}

and a set of median negative estimates

M− = {x̃ ∈M : d(x̃,M−
0 ) ≤ d(x̃,M+

0 )
}
,

where M−
0 = −b, M+

0 = b are the reference estimates of subclasses M−

and M+, respectively.
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General Scheme of Threshold Fuzzy Ranking

General Scheme of Threshold Fuzzy Ranking

The following steps are performed for each alternative x̃ = (x̃1, . . . , x̃n)
and each class S ∈ {L,M−,M+, H}.

1. The distances d (x̃i, S0) are calculated ∀x̃i ∈ S (the values
d (x̃i,M0), d

(
x̃i,M

±
0

)
are calculated for the class M), i = 1, . . . , n.

2. The value
FS (x̃i) = ψ (d (x̃i, S0))

characterizes the normalized degree of confidence that the estimate
x̃i ∈ S, where nonincreasing function ψ : [0,+∞) → [0, 1] satisfies
the condition ψ(0) = 1.

3. The value

vS (x̃) =
∑
x̃i∈S

FS (x̃i), S ∈ {L,M−,M+, H}

characterizes the cardinality of the set of fuzzy estimates of the
class S.
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General Scheme of Threshold Fuzzy Ranking

4. Let’s apply the lexicographic aggregation rule:

φ (x̃) > φ (ỹ) ⇔

vL (x̃) < vL (ỹ)

or
vL (x̃) = vL (ỹ) , vM− (x̃) < vM− (ỹ)

or

vL (x̃) = vL (ỹ) , vM− (x̃) = vM− (ỹ) , vM+ (x̃) < vM+ (ỹ)

or
vL (x̃) = vL (ỹ) , vM− (x̃) = vM− (ỹ) ,

vM+ (x̃) = vM+ (ỹ) , vH (x̃) < vH (ỹ) .
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General Scheme of Threshold Fuzzy Ranking

We will consider the value

dδ(A,B) = |V al(A)− V al(B)|+ δ |Am(A)−Am(B)| , 0 < δ ≤ 1
2

as the distance between fuzzy numbers A and B, where

V al(A) = 1
2

∫ 1

0
(lA(α) + rA(α)) dα, Am(A) =

∫ 1

0
(rA(α)− lA(α)) dα

are the expected value and ambiguity of the fuzzy number A,
respectively. Here Aα = {t : µA(t) ≥ α} = [lA(α), rA(α)] is a α-cut of a
fuzzy number (µA is a membership function), α ∈ (0, 1].

We will use a linear function ψ(t) = 1− 1
t0
t, t ∈ [0, t0] at step 2 of the

threshold aggregation.
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General Scheme of Threshold Fuzzy Ranking

Proposition.

vL(x̃) =
δ

1 + δ
|L(x̃)| − 1

a(1 + δ)

∑
x̃i∈L

(V al(x̃i) + δAm(x̃i)),

vM−(x̃) =
1 + 2δ

2(1 + δ)

∣∣M−(x̃)
∣∣− 1

2b(1 + δ)

∑
x̃i∈M−

(V al(x̃i) + δAm(x̃i)),

vM+(x̃) =
1 + 2δ

2(1 + δ)

∣∣M+(x̃)
∣∣+ 1

2b(1 + δ)

∑
x̃i∈M+

(V al(x̃i)− δAm(x̃i)),

vH(x̃) =
δ

1 + δ
|H(x̃)|+ 1

a(1 + δ)

∑
x̃i∈H

(V al(x̃i)− δAm(x̃i)),

where S(x̃) = {x̃i ∈ S} , S ∈ {L,M−,M+, H}.
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Formation of Fuzzy Estimates

Formation of Fuzzy Estimates from Point Data

Below we apply this technique to the ranking of crisp data, presented
in the form {(xi, λi)}ni=1, where xi is a point expert estimate (higher
value corresponds to higher quality), λi is a degree of confidence in the
correctness of their decision (higher value corresponds to greater
confidence).
Information about the degree of confidence in the correctness of one’s
decision can be used to blur point estimates. We will adhere to the
following blur principles:

the lower the degree of confidence, the greater should be the
degree of blurring and ambiguity of fuzzy estimates;

the degree of blur should be zero for estimates with the highest
degree of confidence;

”extreme” estimates with a low degree of confidence should not
move away from the neutral estimate after blurring.
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Formation of Fuzzy Estimates

The dependence of blurring on the degree of confidence λ ∈ [0, 1] can
be modeled using the modifier mλ : [0, 1] → [0, 1], mλ(0) = 0,
mλ(1) = 1 according to the rule µmλA(t) = mλ(µA(t)). The modifier
mλ must satisfy the conditions:

1) m1A = A;

2) Fuz(mλA) ≥ Fuz(mτA) for λ ≤ τ , where Fuz is some (fixed)
degree of fuzziness of a fuzzy number;

3) Am(mλA) ≥ Am(mτA) for λ ≤ τ , where Am is some (fixed)
measure of the ambiguity of a fuzzy number;

4) d(mλA,M0) ≤ d(mτA,M0) for λ ≤ τ and A is an ”extreme” fuzzy
estimate, i.e. A ∈ L or A ∈ H.
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Formation of Fuzzy Estimates

If A and mλA are trapezoidal fuzzy numbers and

Fuz(A) = |suppA\ kerA| , Am(A) =
1

2
(|suppA|+ |kerA|) ,

then the conditions 2) and 3) are equivalent to the following

2’) ker(mλA) ⊆ ker(mτA) and supp(mλA) ⊇ supp(mτA) for λ ≤ τ ;

3’) |ker(mλA)|+ |supp(mλA)| ≥ |ker(mτA)|+ |supp(mτA)| for λ ≤ τ .

Example

Let nonnegative nonincreasing functions h1(λ) and h2(λ) satisfy the
condition h1(1) = h2(1) = 0. Consider the following external blur
modifier

mλA = (a1 − h1(λ), a1, a2, a2 + h2(λ)).

Then we have Fuz (mλA) = h1(λ) + h2(λ) and
Am (mλA) = a2 − a1 +

1
2 (h1(λ) + h2(λ)). This modifier mλ satisfies

conditions 1) – 3).
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Numerical Example

Numerical Example

Consider an example of ranking articles of conferences in the
conference management system, such as EasyChair.

This system uses a septennial scoring system
xi ∈ {−3,−2,−1, 0, 1, 2, 3}, corresponding to the recommendations
”strong reject”, ”reject”, ”weak reject”, ”borderline paper”, ”weak
accept”, ”accept”, ”strong accept”. In addition, the reviewer gives an
assessment on a five-fold scale (0.2 – ”none”, 0.4 – ”low”, 0.6 –
”medium”, 0.8 – ”high”, 1 – ”expert”) about the degree of confidence
in the correctness of his decision: λi ∈ {0.2, 0.4, 0.6, 0.8, 1}.
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Numerical Example

Data
{
(x

(k)
i , λ

(k)
i )

}5

i=1
of n = 5 reviewers on 4 articles are presented in

Table (i is the index of the reviewer, k is the index of the article,
k = 1, . . . , 4), where L = {−3,−2,−1}, M = {0}, H = {1, 2, 3}.

paper 1 paper 2 paper 3 paper 4

rev. 1 (2, 0.8) (2, 1) (1, 0.8) (0, 0.6)
rev. 2 (1, 1) (2, 0.8) (2, 0.6) (1, 0.4)
rev. 3 (0, 0.8) (0, 0.6) (−1, 0.6) (1, 1)
rev. 4 (3, 0.4) (−1, 0.4) (0, 0.6) (2, 0.2)
rev. 5 (2, 0.6) (1, 0.6) (1, 1) (2, 1)

x(k) (0, 1, 2, 2, 3) (−1, 0, 1, 2, 2) (−1, 0, 1, 1, 2) (0, 1, 1, 2, 2)

t(k) (M,H,H,H,H) (L,M,H,H,H) (L,M,H,H,H) (M,H,H,H,H)
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Numerical Example

If we take into account only the three-grade recommendations of the
reviewers (L = {−3,−2,−1}, M = {0}, H = {1, 2, 3}) and do not take
into account the degree of confidence, then we will get the vectors of
cardinalities v(x(k)) =

(
vL(x

(k)), vM (x(k)), vH(x(k))
)
, k = 1, . . . , 4.

If, however, estimates close to the medium ±1 with a low degree of
confidence λ ≤ 0.6 are attributed to the class M , then we will obtain
the following (extended) vectors of cardinalities vext(x

(k)), k = 1, . . . , 4.

paper 1 paper 2 paper 3 paper 4

v(x(k)) (0, 1, 4) (1, 1, 3) (1, 1, 3) (0, 1, 4)

vext(x(k)) (0, 1, 4) (0, 3, 2) (0, 2, 3) (0, 2, 3)

v(x̃(k)) (0, 0.5, 0.5, 2.59) (0, 1.33, 1.33, 1.3) (0, 1.33, 0.5, 1.57) (0, 0.5, 1.33, 1.75)
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Numerical Example

Numerical Example. Fuzzy Aggregation

Let us put each point estimate x in correspondence with the segment:
[0.75(x− 1), 0.75x] for x ∈ {−3,−2,−1}; [0.75x, 0.75(x+ 1)] for
x ∈ {1, 2, 3}; [−0.75, 0.75] for x = 0. This segment will be the kernel
ker (x̃) of the trapezoidal fuzzy number x̃.

We will use the modifier mλA = (a1 − h1(λ), a1, a2, a2 + h2(λ)) of the
segment-kernel A = [a1, a2], where h1(λ) = 0, h2(λ) =

1−λ
5+λ for A ∈ L;

h1(λ) =
1−λ
5+λ , h2(λ) = 0 for A ∈ H; h1(λ) = h2(λ) =

1−λ
5+λ for A ∈M .

Next, we calculate the vectors of fuzzy cardinalities
v(x̃(k)) =

(
vL(x̃

(k)), vM−(x̃(k)), vM+(x̃(k)), vH(x̃(k))
)
, a = 3, b = 1.5,

δ = 0.3.
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Numerical Example

The final rankings obtained by the methods of crisp and fuzzy
threshold aggregations are given in Table.

ranking

v(x(k)) φ(x(1)) = φ(x(4)) > φ(x(3)) = φ(x(2))

vext(x
(k)) φ(x(1)) > φ(x(4)) = φ(x(3)) > φ(x(2))

v(x̃(k)) φ(x(1)) > φ(x(4)) > φ(x(3)) > φ(x(2))

The above example shows that fuzzy threshold aggregation is more
sensitive to ranking than the crisp rule. Some alternatives that were
indistinguishable with respect to the non-fuzzy threshold aggregation
rule began to differ with respect to the fuzzy rule.
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Summary and Conclusion

Summary and Conclusion

a procedure for threshold ranking of alternatives represented by
vectors of fuzzy numbers has been developed;

a procedure for blurring point expert data on information about
the degree of confidence of experts in their assessments is proposed
and investigated;

the specified procedures of fuzzy threshold aggregation and
blurring are demonstrated on the example of ranking articles
according to the recommendations of reviewers and the degree of
their confidence in their recommendations;

in the future, it is of interest to develop the axiomatic of fuzzy
threshold aggregation.

A. Lepskiy (HSE) Fuzzy Threshold Aggregation INFUS 2023 20 / 22



References

References

Aleskerov, F.: Arrovian Aggregation Models. Kluwer, Dordrecht (1999)

Aleskerov, F., Chistyakov, V., Kalyagin, V.: Social threshold
aggregations. Social Choice Welfare 35, 627–646 (2010)

Aleskerov, F.T., Yakuba, V.I.: A Method for Threshold Aggregation of
Three-Grade Rankings. Doklady Mathematics 75(2), 322–324 (2007)

A. Lepskiy (HSE) Fuzzy Threshold Aggregation INFUS 2023 21 / 22



References

Thanks for you attention

alepskiy@hse.ru
https://www.hse.ru/en/org/persons/10586209

A. Lepskiy (HSE) Fuzzy Threshold Aggregation INFUS 2023 22 / 22


	Research Motivation
	Outline of Presentation
	Non-Fuzzy the Threshold Aggregation Problem
	Threshold Aggregation with Fuzzy Data
	General Scheme of Threshold Fuzzy Ranking
	Formation of Fuzzy Estimates
	Numerical Example
	Summary and Conclusion
	References

