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Abstract. We apply Dempster-Shafer theory in order to reveal impor-
tant elements in undirected weighted networks. We estimate cooperation
of each node with different groups of vertices that surround it via con-
struction of belief functions. The obtained intensities of cooperation are
further redistributed over all elements of a particular group of nodes
that results in pignistic probabilities of node-to-node interactions. Fi-
nally, pairwise interactions can be aggregated into the centrality vector
that ranks nodes with respect to derived values. We also adapt the pro-
posed model to multiplex networks. In this type of networks nodes can
be differently connected with each other on several levels of interaction.
Various combination rules help to analyze such systems as a single entity,
that has many advantages in the study of complex systems. In partic-
ular, Dempster rule takes into account the inconsistency in initial data
that has an impact on the final centrality ranking. We also provide a
numerical example that illustrates the distinctive features of the pro-
posed model. Additionally, we establish analytical relations between a
proposed measure and classical centrality measures for particular graph
configurations.

Keywords: Belief Functions · Network Analysis · Centrality Measures.

1 Introduction

Dempster-Shafer theory of belief functions [1,2] is a widely used tool to measure
belief or conflict between elements in a considered system [1,2]. Recently it has
also found use in the field of social network analysis [3]. Social networks represent
interactions that are met between people, countries, in transportation systems,
etc.

One of the core problems in network science is the detection of central ele-
ments. In [4] a modified evidential centrality and evidential semi-local centrality
in weighted network are proposed. The measures use the combination of “high”,
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“low” and “(high, low)” probabilities of the influence based on weighted and un-
weighted degrees of nodes via Dempster’s rule. In [5] the same rule is applied in
order to combine different node-to-node interactions in a network. The proposed
measures that are able to detect social influencers were applied to Twitter data.

The theory of belief functions can be also adapted to the problem of com-
munity detection, i.e. the partition of nodes into tightly connected groups. For
instance, in [6] the author proposed a novel method based on local density mea-
sures assigned to each node that are further used for the detection density peaks
in a graph.

In the frame of the recent work we mostly focus on the problem of the detec-
tion of the most influential as well as the most affected elements in networks. The
knowledge about the position of nodes plays a significant role in understanding
of structural properties of complex systems.

There exist several networking approaches that aim to assess the impor-
tance of nodes in graphs. The first class of the methods refers to classical
centrality measures [7]. It includes degree centrality measure that prioritizes
over nodes with the largest number of neighbors or with the largest sum of in-
coming/outcoming weights. The eigenvector group of centralities, that includes
eigenvector centrality itself, Bonacich, PageRank, Katz, Hubs and Authorities,
Alpha centrality, etc., takes into account the importance of neighbors of a node,
i.e. the centrality of a vertex depends on centralities of the adjacent nodes [8–12].
Closeness and betweenness centralities consider the distance between nodes and
the number of the shortest paths that go through nodes in a network [13,14].

Another class of measures, that detect the most important elements, employs
cooperative game theoretical approach. It includes the estimation of Myerson
values, that is similar to Shapley-Shubik index calculation [15]. It also requires
the introduction of nodes set functions, that can vary depending on the problem
statement. In [16] the Hoede–Bakker index is adjusted to the estimation of the
influence elements in social networks. In [17] Long-Range Interaction Centrality
(LRIC) is proposed, that estimates node-to-node influence with respect to in-
dividual attributes of nodes, the possibility of the group influence and indirect
interactions through intermediate nodes.

However, all the approaches described above are designed for so-called mono-
plex networks and require adaptation to complex structures with many types of
interactions between adjacent nodes (so-called multilayer networks [18]). In re-
cent years multilayer networks became one of the central topics in the field
of network science. A multilayer network where the set of nodes (or a part of
nodes) remains the same through all layers is called multiplex network, which is
the object of the research in this work.

There exist several ways for the assessment of central elements in multi-
plex networks. Firstly, one can calculate centralities for each layer separately
and further aggregate the obtained values through all considered networks. Sec-
ondly, one can aggregate connections between pairs of nodes to obtain monoplex
network and then apply centrality measures to a new weighted graph. The mod-
ification of classical centrality measures to interconnected multilayer networks is
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described in [18, 19]. In [20] social choice theory rules are applied to multiplex
networks in order to detect key elements.

However, the final results for these approaches are calculated from the sec-
ondary data. In this work we propose a novel technique of the key elements
assessment. We construct a mapping between each node and sets of other nodes,
which is a mass function. In case of several layers we combine mass functions on
each layer to a unique function that can be used for the centrality estimation
in the whole system. The key advantages of our approach are that we take into
account interactions with different groups of nodes and we are able to estimate
node-to-node influence within the whole network structure. We also take into
account the consistency on connections on different network layers.

This paper is organized as follows: in Section 2 we describe some basic con-
cepts from belief functions theory. In Section 3 we propose a centrality measure
for one-layer network and apply it to a toy example. In Section 4 we develop
an approach to elucidate important elements in networks with several layers. In
the same Section we apply the proposed method to two-layers network. Section
5 contains a discussion of our approach as well as conclusion to the work.

2 Background to the Theory of Belief Functions

In this Section we will remind some basic definitions and notions from Dempster-
Shafer theory of belief functions [1, 2] that are further employed in this work.

Let X be a finite set that is called frame of discernment and 2X is a set
of all subsets of X. Function m : 2X → [0; 1] that meets the requirements of
normalization condition, i.e. m(∅) = 0 and

∑
A∈2X m(A) = 1, is called basic

probability assignment or a mass function. All A ∈ 2X such that m(A) > 0 are
called focal elements and the family of all focal elements is called the body of
evidence.

Mass function m can be associated with two set functions namely a belief
function denoted by g(A) =

∑
B⊂Am(B) and a plausibility function denoted

ḡ(A) =
∑
B:A∩B 6=∅m(B), that is dual to belief function g(A). These two func-

tions can be considered as lower and upper bounds for the probability estimation
of event A : g(A) ≤ P (A) ≤ ḡ(A), A ∈ 2X . The value of function g(A) reflects
the belief level to the fact that x ∈ A ⊆ X, where x from X. We denote by
Bel(X) a set of all belief functions g on set X.

Belief function g can be also represented as a convex combination of categor-

ical belief functions ηB(A) =

{
1, B ⊆ A
0, B 6⊆ A

, B ∈ 2X \{∅} with {m(B)} multipliers:

g(A) =
∑
Bm(B)ηB(A). Note that ηX describes vacuous evidence that x ∈ X.

Thus, we call this function as vacuous belief function. Additionally, mass function
m(A) can be also expressed from belief function g with Möbius transformation
as m(A) =

∑
B⊂A (−1)|A\B|g(B).

In this work we mainly focus on combination techniques adopted from Dempster-
Shafer theory. By combination we mean some operator R : Bel(X)×Bel(x)→
Bel(X) that transforms two belief functions into one belief function. We denote
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by m = m1 ⊗R m2 the combinations of two mass functions m1 and m2 under
rule R.

There exist various combination rules that are widely used in the theory and
applications of belief functions. For instance, Dempster rule [1], that is regarded
as the pioneered and the most popular combination technique in Dempster-
Shafer theory, is calculated as follows:

m(A) = (m1 ⊗D m2)(A) =
1

1−K
∑

B∩C=A

m1(B) ·m2(C) (1)

for all A 6= ∅ and m(∅) = 0, where K =
∑
B∩C=∅m1(B) ·m2(C). Parameter

K = K(m1,m2) ∈ [0; 1] indicates the level of conflict between two evidences. If
K = 1 then the level of conflict is the highest and rule (1) is not applicable in
this case.

Another combination technique that is similar to Demster rule is Yager com-
bination rule [21] that is defined as

m(A) = (m1 ⊗Y m2)(A) =
∑

B∩C=A

m1(B) ·m2(C) (2)

for all A 6= ∅, m(∅) = 0 and m(X) = K + m1(X) · m2(X). According to this
rule, the value of conflict K is reallocated among the mass of ignorance m(X).

Other combination rules are also described in [22], some generalizations can
be found in [23,24], axiomatics and the description of conflict rules are reviewed
in [25–28].

Additionally, discounted technique proposed in [1] can be applied to mass
functions in case when various sources of information that are determined by
their belief functions have different levels of reliability or different priority. Dis-
counting of mass functions can be performed with the help of parameter α ∈ [0; 1]
as follows:

mα(A) = (1− α)m(A) for A 6= X and mα(X) = (1− α)m(X) + α.

If α = 0 then the source of information is regarded as thoroughly reliable and
mα(A) = m(A) ∀A ∈ 2X . Conversely, if α = 1 then mα(X) = 1 and the related
belief function is vacuous.

3 Centrality Assessment with Belief Functions

In this Section we describe a graph model with one layer of interaction as well as
the construction of centrality measure based on a mass function for a network.

We consider connected graph as tuple G = (V,E,W ), where V = {v1, ..., vn}
is a set of nodes, |V | = n, and E = {e(vi, vj)} as a set of edges. For the simplicity,
we associate vk with number k, k = 1, ..., n and denote e(vi, vj) as eij . In this
work we consider undirected network, i.e. eij ∈ E implies that eji ∈ E. We also
analyze weighted networks, i.e. each edge eij in network G associates with weight
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wij ∈W . Without loss of generality, we assume that all weights wij ∈ [0; 1] and
wij = 0 implies that eij 6∈ E. Weight wij between nodes vi and vj indicates the
degree of interaction between corresponding nodes.

Our main focus is to range nodes with respect their importance in a network.
We assume that a node is considered to be pivotal if it actively interacts with
other nodes in a graph. In our analysis we take into account the connections
with distant nodes as well as the cooperation with group of other nodes. More
precisely, we suppose that centrality of a node depends on relative aggregated
weight of adjacent subgraphs to the considered node. At the same time, the
aggregated weight of a subgraph can be estimated with the help of monotonic
measures including such measures as belief functions.

We consider a family of belief functions gk =
∑
Bmk(B)ηB for all vertices

vk ∈ V in network G. Let N
(p)
k be a p-neighborhood of node vk, i.e. a set of

nodes of graph G whose distance from node vk is at most p edges and vk 6∈ N (p)
k .

We denote by |W | =
∑
i<j wij the total sum of all weights in a graph. Next, we

define mass function mk of node vk in connected graph G as follows:

mk(A) =
1

|W |



wik, if A = {vi} ⊆ N (1)
k ,

γ
(k)
ij · wij , if A = {vi, vj} ⊆ N (p)

k ∧ eij ∈ E,
|W | −

∑
vi∈N(1)

k

wik −
∑

vi,vj∈N(p)
k

eij∈E

γ
(k)
ij · wij , if A = V,

0, otherwise,

(3)

where N
(p)
k 6= ∅ and γ

(k)
ij ∈ [0; 1] is a discount factor that decreases the impor-

tance of the connection of node vk with distant nodes. This coefficient can be
determined in the following way:

γ
(k)
ij =

1

1 + min{dik, djk}
, (4)

where d is a distance between corresponding nodes. A mass function of the k-th
node reaches the higher values on single nodes that are adjacent to the k-th node
and the lower values on the pairs of connected nodes that both belongs to the
p-neighborhood of node k. Thus, the value of mass function (3) on one- and two-
element sets is proportional to the weights on corresponding edges and inversely
proportional to the distance to a considered node. Belief function gk aggregates
the obtained mass functions and corresponding weights over all nodes and edges
that are contained in p-neighborhood of the k-th node. Other characteristics can
be also taken into account as weighted path between nodes, the joint intensity
of the connections along the considered path, etc.

It can be seen that the proposed mass function mk : 2V → [0; 1] satisfies the
normalization condition: mk(∅) = 0,

∑
A∈2V mk(A) = 1. Thus, we can regard

mk as basic probability assignments and gk =
∑
Bmk(B)ηB are belief functions

of V .
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Similar measures for the nodes influence assessment in networks are proposed
in [29].

The proposed mass function mk(A) characterizes the distribution of pure
interaction of node vk with a set of closely located nodes from A, i.e. we exclude
the interactions with other subsets of A in mk(A). The value mk(V ) indicates
the level of ignorance of the interactions between node vk and distant nodes in

the graph outside N
(p)
k .

The pairwise interaction between nodes can be estimated by the reallocation
of mk(A) among all nodes in A. This can be done with the help of so-called
pignistic probabilities proposed in [30]:

Betvk({u}) =
∑
A:u∈A

mk(A)

|A|
. (5)

It has been known that pignistic probabilities for belief function gk =
∑
Bmk(B)ηB

defined on V coincide with Shapley values [31] that are widely used in coopera-
tive game theory and are calculated as follows:

Betvk({u}) =
∑
A⊆V
u∈A

(n− |A|)!(|A| − 1)!

n!
(gk(A)− gk(A \ {u})).

Value Betvk({u}) indicates the fraction of interaction of node vk with node u.
Hence, the value

qv =
∑
u∈V

Betv({u}), ∀v ∈ V (6)

shows the total cooperation with node v in graph G. Consequently, the ranking
of q values demonstrates the importance on nodes with respect to their activity
in the considered graph.

We also note that if graph G has several connected components then the
proposed analysis is provided for each component separately. The size of each
component can be taken into account in order not to overestimate the interac-
tions in small groups.

We illustrate the proposed model on a toy example represented on Fig. 1.

For the graph on Fig. 1 |W | = 3.2. Let us estimate the belief functions for each
node according to formulas (3) and (4) taking into account 2-neighborhood of
each node:
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Fig. 1. Graph for the numerical example.

g1 =
9

32
η{v2} +

3

32
η{v2,v4} +

3

32
η{v2,v5} +

5

96
η{v4,v5} +

23

48
ηV ,

g2 =
9

32
η{v1} +

3

16
η{v4} +

3

16
η{v5} +

3

64
η{v3,v4} +

3

64
η{v3,v5} +

5

64
η{v4,v5} +

11

64
ηV ,

g3 =
3

32
η{v4} +

3

32
η{v5} +

3

32
η{v2,v4} +

3

32
η{v2,v5} +

5

64
η{v4,v5} +

35

64
ηV ,

g4 =
3

16
η{v2} +

3

32
η{v3} +

5

32
η{v5} +

9

64
η{v1,v2} +

3

32
η{v2,v5} +

3

64
η{v3,v5} +

9

32
ηV ,

g5 =
3

16
η{v2} +

3

32
η{v3} +

5

32
η{v4} +

9

64
η{v1,v2} +

3

32
η{v2,v4} +

3

64
η{v3,v4} +

9

32
ηV .

Hence, the matrix of pignistic probabilities with Betvk({vi}) values in the k-th
row and the i-th column is the following:

Bet =


0.096 0.471 0.096 0.169 0.169
0.316 0.034 0.081 0.284 0.284
0.109 0.203 0.109 0.289 0.289
0.127 0.361 0.173 0.056 0.283
0.127 0.361 0.173 0.283 0.056


Finally, the vector of interactions q = (q1, ..., q5) is equal to (0.774, 1.43, 0.633,
1.081, 1.081). As the result, the final ranking of centrality vector arranges nodes
in the following order: v2 � v4 = v5 � v1 � v3. The same ranking can be
obtained with eigenvector centrality measure, which confirms the consistency of
the proposed approach.

It can be also proved that if we consider a 1-neighborhood of a node that,
in its turn, induces an acyclic subgraph (i.e. a star subgraph) then the central-
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ity value of a node according to formulas (3)- (6) is associated with a degree
centrality measure. More precisely, it can be formulated as follows.

Proposition 1. If centrality value qv for node v ∈ V in graph G = (V,E,W ),

|V | = n, n ≥ 2 is calculated with regard to 1-neighborhood N
(1)
v of node v and a

subgraph constructed on nodes N
(1)
v ∪ {v} is a star graph with center v then the

interaction value of node v is equal to

qv =
n(v)

|W |
+ 1− 2

n
,

where n(v) =
∑
u:e(v,u)∈E w(v, u) is a weighted degree of node v, n = |V |.

According to Proposition 1, the interaction centrality value qv constructed
via belief functions is proportional to weighted degree centrality of node v up to
the constant term independent of node v with respect to configuration described
above.

4 Centrality Assessment in Multiplex Network

In many real-world systems the same set of objects can interact with each other
in several ways. Thus, an appropriate network model is required in order to
qualitatively analyze the relations between nodes. This can be done with the
help of a multiplex network that represents a system of graphs with many layers
of interaction. The key point here is that the whole system of graphs should be
analyzed jointly as a single entity. Next, we describe a multiplex graph model
and the technique for the assessment of important elements in such systems.

We consider a multiplex graph as the family of networks G = (V,E(s),W (s))
with the common set of nodes V = {v1, ..., vn} but distinct set of edges E(s) =
{e(s)(vi, vj)}, where s = {1, ..., l} indicates a particular network-layer in a mul-
tiplex graph with l levels of interaction. As it is stated above, we associate node

vk with number k, k = 1, ..., n and denote e(s)(vi, vj) as e
(s)
ij . The other notations

remain the same adjusted to layer s.
In order to obtain central elements in the whole system we can estimate the

important elements at each layer separately, for example, with the help of the
approach described above. As the result, we derive a family of vectors q(s) that
can be aggregated into a single ranking. However, we consider all layers indepen-
dently of each other, which means that multiplex system loses its significance.
Instead, we consider another approach.

Firstly, we calculate the set of mass functions
{
m

(s)
k

}n
k=1

for each layer s, s =

1, ..., l. Further, this set can be put together into an aggregated mass function

with the help of combination rule R as mk = m
(1)
k ⊗R ... ⊗R m

(l)
k . Note that

discounted coefficients α can be applied at this stage as well. Finally, we can
derive centralities for all elements in the considered system as it is described in
formulas (5) and (6).
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Fig. 2. The second graph for the numerical example.

In order to demonstrate the whole idea let us investigate the following ex-
ample. Assume that the system of nodes from the graph on Fig. 1 also interacts
on another layer as it is shown on Fig. 2.

The sum of weights for the second graphs is |W | = 4.2. Hence, the belief
functions for each node of the graph on Fig.2. with respect to 2-neighborhood
of nodes are following:

g
(2)
1 =

1

7
η{v2} +

3

14
η{v4} +

4

21
η{v5} +

5

84
η{v2,v3} +

1

21
η{v3,v4}+

+
1

14
η{v3,v5} +

1

21
η{v4,v5} +

19

84
ηV ,

g
(2)
2 =

1

7
η{v1} +

5

42
η{v3} +

3

28
η{v1,v4} +

2

21
η{v1,v5} +

1

21
η{v3,v4}+

+
1

14
η{v3,v5} +

2

63
η{v4,v5} +

97

252
ηV ,

g
(2)
3 =

5

42
η{v2} +

2

21
η{v4} +

1

7
η{v5} +

1

14
η{v1,v2} +

3

28
η{v1,v4}+

+
2

21
η{v1,v5} +

1

21
η{v4,v5} +

9

28
ηV ,

g
(2)
4 =

3

14
η{v1} +

2

21
η{v3} +

2

21
η{v5} +

1

14
η{v1,v2} +

2

21
η{v1,v5}+

+
5

84
η{v2,v3} +

1

14
η{v3,v5} +

25

84
ηV ,

g
(2)
5 =

4

21
η{v1} +

1

7
η{v3} +

2

21
η{v4} +

1

14
η{v1,v2} +

3

28
η{v1,v4}+

+
5

84
η{v2,v3} +

1

21
η{v3,v4} +

2

7
ηV .
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The matrix of pignistic probabilities Bet
(2)
k ({vi}) for Numerical example 2 is

equal to

Bet(2) =


0.045 0.218 0.135 0.307 0.295
0.321 0.077 0.256 0.170 0.176
0.201 0.219 0.064 0.237 0.279
0.357 0.125 0.220 0.060 0.238
0.337 0.123 0.253 0.230 0.057


As the result, centrality vector q(2) is equal to (1.261, 0.762, 0.928, 1.006, 1.045),
that ranks nodes in the following order: v1 � v5 � v4 � v3 � v2, that also
coincides with eigenvector centrality ranking.

We now bring two graphs together and calculate pairwise aggregation of

belief functions g
(1)
k and g

(2)
k with the help of Dempster rule D according to

formula (1). As the result, we obtain new belief functions gk = D(g
(1)
k , g

(2)
k ) that

indicate the interactions between nodes in the multiplex structure. Assuming
that discounting parameter α = 0 for both networks we obtain the following
belief functions:

g1 = 0.291η{v2} + 0.186η{v4} + 0.172η{v5} + 0.037η{v2,v3} + 0.027η{v2,v4}+

+ 0.027η{v2,v5} + 0.029η{v3,v4} + 0.044η{v3,v5} + 0.048η{v4,v5} + 0.139ηV ,

g2 = 0.0318η{v1} + 0.051η{v3} + 0.174η{v4} + 0.178η{v5} + 0.025η{v1,v4}+

+ 0.023η{v1,v5} + 0.039η{v3,v4} + 0.047η{v3,v5} + 0.053η{v4,v5} + 0.092ηV ,

g3 = 0.116η{v2} + 0.167η{v4} + 0.208η{v5} + 0.045η{v1,v2} + 0.068η{v1,v4}+

+ 0.060η{v1,v5} + 0.035η{v2,v4} + 0.035η{v2,v5} + 0.063η{v4,v5} + 0.203ηV ,

g4 = 0.148η{v1} + 0.144η{v2} + 0.119η{v3} + 0.211η{v5} + 0.103η{v1,v2}+

+ 0.038η{v1,v5} + 0.024η{v2,v3} + 0.040η{v2,v5} + 0.053η{v3,v5} + 0.120ηV ,

g5 = 0.138η{v1} + 0.143η{v2} + 0.145η{v3} + 0.208η{v4} + 0.102η{v1,v2}+

+ 0.044η{v1,v4} + 0.024η{v2,v3} + 0.039η{v2,v4} + 0.042η{v3,v4} + 0.116ηV .

Hence, the matrix of pignistic probabilities of aggregated belief functions is

Bet =


0.028 0.364 0.083 0.266 0.259
0.361 0.018 0.113 0.251 0.257
0.127 0.214 0.041 0.291 0.328
0.243 0.251 0.181 0.024 0.301
0.234 0.249 0.201 0.293 0.023


Finally, the vector of centrality values q for the multiplex network is equal to
(0.992, 1.097, 0.618, 1.125, 1.168), that ranks nodes as v5 � v4 � v2 � v1 � v3.
If we average over eigenvector centrality values then we obtain the following
ordering: v1 � v5 � v4 � v2 � v3, that almost agrees with the ordering of the
second graph.

As we can see, the results obtained by two approaches differ significantly. This
can be explained by the choice of aggregation rule (1) that takes into account
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the possible disagreement in initial data. It means that if the connections diverse
for some node on different levels of interaction it leads to the decrease of the
importance of this node in aggregated ranking. This fact can be seen by the
example of node 1 that has only one strong connection in the first graph and
three connections in the second graph. Despite the fact that this node is ranked
as the first for the second network it has low position in aggregated ranking.

Another important point is that stability through all layers is encouraged
by higher ranks. For instance, node 5 is ranked as the first one for both layers
separately. However, in aggregated ranking it takes the first place as this node
demonstrates more stable connections through both layers as well as node 4.

Additionally, if we consider a 1-neighborhood of nodes in multiplex acyclic
graphs with two layers then the following propositions concerning the aggregated
interaction centrality value can be proved.

Proposition 2. If centrality value qv for node v ∈ V in acyclic graph G =
(V,E(s),W (s)), s = 1, 2, |V | = n, n ≥ 2 is calculated with regard to 1-neighborhood

N
(1)
v of node v and the Dempster combination rule (1) is used then the aggregated

interaction value of node v is equal to

qv =
1

|W (1)||W (2)|
∑
u∈V

w(1)(u, v)w(2)(u, v)

1−Ku
+

+
1

|W (1)|
∑
u∈V

w(1)(u, v)

1−Ku

(
1− n(2)(u)

|W (2)|

)
+

+
1

|W (2)|
∑
u∈V

w(2)(u, v)

1−Ku

(
1− n(1)(u)

|W (1)|

)
+B(G),

where n(s)(v) =
∑
u:e(v,u)∈E(s)w(s)(v,u) is a weighted degree of node v in graph G

on layer s, s = 1, 2; Ku = 1
|W (1)||W (2)|

∑
x,y∈V :x 6=y,
e(u,x)∈E(1),

e(u,y)∈E(2)

w(1)(u, x)w(2)(u, y) is the level

of conflict of node u ∈ V ; B(G) = 1
n

∑
u∈V

1
1−Ku

(
1− n(1)(u)

|W (1)|

)(
1− n(2)(u)

|W (2)|

)
is

a constant that is independent of node v.

If we apply Yager combination rule (2) then this expression is simplified.

Proposition 3. If centrality value qv for node v ∈ V in acyclic graph G =
(V,E(s),W (s)), s = 1, 2, |V | = n, n ≥ 2 is calculated with regard to 1-neighborhood

N
(1)
v of node v and the Yager combination rule (2) is used then the aggregated

interaction value of node v is equal to

qv =
n(1)

|W (1)|
+

n(2)

|W (2)|
+

+
1

|W (1)||W (2)|
∑
u∈V

(
w(1)(u, v)w(2)(u, v)− w(1)(u, v)n(2)(u)− w(2)(u, v)n(1)(u)

)
+

+ C(G),
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where C(G) = 1
n

∑
u∈V

(
Ku +

(
1− n(1)(u)

|W (1)|

)(
1− n(2)(u)

|W (2)|

))
is a constant that is

independent of node v.

It can be seen that in the last case the aggregated interaction centrality value
of node v is represented as a sum of normalized weighted degree centralities on
each layer and the value that represents the interactions of v’s neighbors through
different layers.

5 Conclusion

In this work we propose a new approach for the nodes importance assessment in
multiplex networks. We apply Dempster-Shafer theory in order to reveal key ele-
ments in undirected weighted graphs as well as to aggregate interactions between
nodes into the total ranking.

We assess the cooperation of nodes with different subgroups of vertices by
evaluating the corresponding belief functions. The proposed model of belief func-
tion takes into account the cooperation with nodes and the groups of nodes that
are located in a given neighborhood of a considered vertex. Further, the ob-
tained intensities of cooperation with different groups of nodes are redistributed
among the participants of these groups that results in node-to-node intensity
of cooperation. The obtained values show real interactions between nodes with
respect to distant connections, that is already informative and cannot be derived
with most of the classical centrality measures. Finally, we aggregate the pairwise
interaction into the final centrality vector that gives the ranking of nodes and
helps to reveal key elements in a network.

If nodes cooperate with each other on different levels of interactions then
we apply a combination rule to mass functions obtained for different layers of a
multiplex structure. In particular, Dempster rule takes into account the disagree-
ment in data on different levels of interaction, i.e. it rewards nodes that have
consistent connections through all layers and reduces the importance of nodes
with unstable links. Additionally, other combination rules can be used as well in
order to estimate the aggregated centralities in multilayer networks. These rules
may consider the reliability, the inconsistency, the uncertainty, etc. of a network
structure in various ways.

It is important to note that the proposed approach can be easily adapted to
directed networks. We also emphasize that parameters of the introduced func-
tions such as discounting coefficients, the radius of nodes neighborhood, etc. can
be tuned in accordance with the problem statement.

It is also shown that the proposed methods give comparable results for one-
layer networks and take into account specifications of a multilayer structure.
In further research we aim to improve the proposed approach and apply the
developed methods to real networks.
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