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Abstract

The qualitative characteristics of the combining evidence with the help
of Dempster’s rule with discounting is studied in this paper in the frame-
work of Dempster-Shafer theory. The discount coefficient (discounting
rate) characterizes the reliability of information source. The conflict be-
tween evidence and change of ignorance after applying combining rule are
considered in this paper as important characteristics of quality of com-
bining. The quantity of ignorance is estimated with the help of linear
imprecision index. The set of crisp and fuzzy discounting rates for which
the value of ignorance after combining does not increases is described.
Keywords: belief functions, discount method, imprecise index

1 Introduction

The study of combining rules of evidence occupies an important place
in the belief functions theory. A combining rule puts in correspondence
to two or more evidences the one evidence. Dempster’s rule [5] was the
first from combining rules. The review of some popular combining rules
can be found in [11]. There is no combining rule which give a plausible
aggregation of information in all cases regardless of context. The prog-
nostic quality of combining evidence is evaluated with the help of some
characteristics. The reliability of sources of information, the conflict mea-
sure of evidence [8], the degree of independence of evidence are a priori
characteristics of quality of combining. The amount of change of igno-
rance after the use of a combining rule is the most important a posteriori
characteristic [9]. The amount of ignorance contained in evidence may be
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estimated with the help of imprecision indices [2]. The generalized Hart-
ley’s measure is an example of such index [6]. It is known, for example,
that the amount of ignorance does not increase when used Dempster’s
rule for non-conflicting evidences. Dempster’s rule can be considered as
an optimistic rule in this sense [9]. On the contrary, Dubois and Prade’s
disjunctive consensus rule [7] has a pessimistic character in the sense that
amount of ignorance does not decrease after applying such a rule.

The discount method is one of the approaches where the reliability of
information source is taken into account. This method was proposed by
Shafer in [12]. The discount coefficient (discounting rate) characterizes
the reliability of information source. The discount method with Demp-
ster’s rule may be pessimistic rule or optimistic rule in depending on the
values of discounting rates. The generalizations of the discount method
were considered in several papers. In particular, Smets in [13] introduced
a family of combination rules known as α-junctions. Pichon and Denoeux
[10] have established the link between the parameter of α-junction and
reliability of information sources.

In this paper we will find conditions on the discount rates for which
the amount of ignorance after applying Dempster’s rule is not increased,
i.e. this rule will be still optimistic in spite of unreliable information
sources. This problem is solved in general case of conflicting evidences and
crisp discounting rates as well as in the case of non-conflicting evidences
and fuzzy discounting rates. In addition, the problem of finding such
discount rates for which a conflict of evidence will not be greater than a
certain threshold and the quality of ignorance after the combination will
not increase is formulated and solved.

2 Belief Function Basics

Let X be a finite universal set and 2X is a set of all subsets of X. We
consider the belief function [12] g : 2X → [0, 1]. The value g(A), A ∈ 2X , is
interpreted as a degree of confidence that the true alternative of X belongs
to set A. A belief function g is defined with the help of so called mass
function mg : 2X → [0, 1] that satisfy the conditions [12]: mg(∅) = 0,
∑

A⊆X mg(A) = 1. Then g(A) =
∑

B: B⊆Amg(B). Let the set of all

belief functions on 2X be denoted by Bel(X).
Conversely the mass function mg can be calculated by using the belief

function g with the help of so-called Möbius transform of g: mg(B) =
∑

A:A⊆B (−1)|B\A|
g(A). The belief function g ∈ Bel(X) may be repre-

sented with the help of so called categorical belief functions η〈B〉(A) =
{

1, B ⊆ A,

0, B 6⊆ A,
A ⊆ X, B 6= ∅. Then g =

∑

B∈2X\{∅}mg(B)η〈B〉. The set

{η〈B〉}, B ∈ 2X\{∅} is a basis in set Bel(X) in the sense that any belief
function g ∈ Bel(X) is represented by uniquely as a convex combination
of primitive measures {η〈B〉}B∈2X\{∅}. The subset A ∈ 2X is called a
focal element if m(A) > 0. Let A be a set of all focal elements. The pair
F = (A, m) is called a body of evidence. We will denote through A(g)
and F (g) the set of all focal elements and the body of evidence corre-
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spondingly related with the belief function g. Let us have two bodies of
evidence F (g1) = (A(g1),mg1) and F (g2) = (A(g2),mg2) which related
with the belief functions g1, g2 ∈ Bel(X). For example, it can be evi-
dences which were received from two information sources. Then the task
of combining of these two evidence in one evidence with the help of some
operator ϕ : Bel2(X) → Bel(X), g = ϕ(g1, g2), is an actual problem.

Dempster’s rule was the first from combining rules. This rule was intro-
duced in [5] and generalized in [12] for combining arbitrary independent
evidence. This rule is defined as g = ϕD(g1, g2) =

∑

A∈2X\{∅}mg(A)η〈A〉,
where

mg(A) =
1

1−K

∑

B∩C=A

mg1(B)mg2(C), A 6= ∅, mg(∅) = 0, (1)

K = K(g1, g2) =
∑

B∩C=∅

mg1(B)mg2(C).

The value K(g1, g2) characterizes the amount of conflict in two in-
formation sources which determined with the help of bodies of evidence
F (g1) and F (g2). If K(g1, g2) = 1 then it means that information sources
are absolutely conflict and Dempster’s rule cannot be applied. The dis-
counting of mass function was introduced by Shafer [12] for accounting of
reliability of information. The main idea consists in the use of coefficient
α ∈ [0, 1] for discounting of mass function:

m
α(A) = (1− α)m(A), A 6= X, m

α(X) = α+ (1− α)m(X). (2)

The coefficient α is called the discounting rate. The discounting rate
characterized the degree of reliability of information. If α = 0 then it
means that information source is absolutely reliable. If α = 1 then it
means that information source is absolutely non-reliable. Dempster’s rule
(1) applies after discounting of mass functions of two evidences in general
with different discounting rates.

The following Dubois and Prade’s disjunctive consensus rule is a dual
to Dempster’s rule [7]: g = ϕDP (g1, g2) =

∑

A∈2X\{∅}mg(A)η〈A〉, where

mg(A) =
∑

B∪C=Amg1(B)mg2(C), A ∈ 2X .

3 Estimation of ignorance associated with

the belief function

Let us have source of information and this information is described by a
belief function g ∈ Bel(X). The belief function g defines the information
with some degree of uncertainty. There are few approaches to definition of
uncertainty measure in the evidence theory. We will follow the approach
described in work [2]. This approach based on the notion of imprecision
index.

Let us know only that true alternative belong to the non empty set
B ⊆ X. This situation may be described with the help of categorical
belief function η〈B〉(A), A ⊆ X, which gives the lower probability of an
event x ∈ A. The degree of uncertainty of such function is described by
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the well-known Hartley measure H(η〈B〉) = log2 |B|, which characterized
the degree of information uncertainty about belonging of true alternative
to set B ⊆ X.

The following construction is a generalization of above situation. Let
g =

∑

B∈2X mg(B)η〈B〉 ∈ Bel(X). Then the generalized Hartley mea-
sure [6] from g is defined as GH (g) =

∑

B∈2X\{∅}mg(B)log2 |B|. The
generalized Hartley measure is an example of the following general no-
tion.

Definition 3.1. [2]. A functional f : Bel(X) → [0, 1] is called impreci-
sion index if the following conditions are fulfilled: 1) if g be a probability
measure then f(g) = 0; 2) f(g1) ≥ f(g2) for all g1, g2 ∈ Bel(X) such that
g1 ≤ g2 (i.e. g1(A) ≤ g2(A) for all A ∈ 2X ); 3) f

(

η〈X〉

)

= 1.

An imprecision index f on Bel(X) is called linear if for any linear
combination

∑k

j=1 αjgj ∈ Bel(X), αj ∈ R, gj ∈ Bel(X), j = 1, ..., k, we

have f
(

∑k

j=1 αjgj

)

=
∑k

j=1 αjf (gj).

Since any linear functional f on Bel(X) is defined uniquely by its
values on a set of primitive measures {η〈B〉}B∈2X\{∅}, then it allows

us to define f with the help of set function µf : 2X → R by the rule
µf (B) = f

(

η〈B〉

)

, B ∈ 2X\{∅}. It is easy to see that monotonicity of set
function µf (B) follows from antimonotonicity of functional f (condition
2) of Definition 3.1) and inequality η〈B′〉 ≥ η〈B′′〉 if B′ ⊆ B′′. We set by
definition that µf (∅) = 0 for every imprecision index f .

The different representations of imprecision index were found in [2].
In this paper we will use the following representation.

Proposition 3.2. A functional f : Bel(X) → [0, 1] is a linear imprecision
index on Bel(X) iff f(g) =

∑

B∈2X\{∅}mg(B)µf (B), where set function

µf satisfies the conditions: 1) µf ({x}) = 0 for all x ∈ X; 2) µf (X) = 1;

3)
∑

B:A⊆B (−1)|B\A|
µf (B) ≤ 0 for all A 6= ∅, X.

Example 1. Let µf (B) = ψ (|B|). Then functions ψ(t) = ln t/ln |X|,
ψ(t) = (t− 1)s/(|X| − 1)s, s ∈ (0, 1] satisfy the all conditions of Proposi-
tion 3.2.

4 Change of ignorance after combining

with the crisp discount rates

Assume that we have two information sources which are defined by the
bodies of evidence F (g1) = (A(g1),mg1) and F (g2) = (A(g2),mg2) corre-
spondingly and which related with the belief functions g1, g2 ∈ Bel(X).
If we apply some combining rule ϕ to the pair of belief functions g1, g2 ∈
Bel(X) then we get a new belief function g = ϕ(g1, g2). We have a ques-
tion about changing of the amount of ignorance after applying combining
rule ϕ. We will estimate the quantity of ignorance with the help of im-
precision index f .

Definition 4.1. A combining rule ϕ is called optimistic (pessimistic)
rule with respect to imprecision index f , if f(g) ≤ min

i∈1,2
f(gi) (f(g) ≥

max
i∈1,2

f(gi)) for all g1, g2 ∈ Bel(X).
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In other words, the optimistic rule does not increase the amount of
ignorance, but the pessimistic rule does not decrease the amount of igno-
rance. It is known [7], [9] that Dempster’s rule is an optimistic rule with
respect to any linear imprecision index, but Dubois and Prade’s disjunc-
tive consensus rule is a pessimistic rule.

Proposition 4.2. Let f be a linear imprecision index on Bel(X). Then:
1) f(g) ≤ min

i
f(gi), if g = ϕD(g1, g2) and evidences related with the

belief functions g1, g2 ∈ Bel(X) are non-conflicting; 2) f(g) ≥ max
i
f(gi),

if g = ϕDP (g1, g2).

Now we investigate on pessimism-optimism Dempster’s rule with dis-
counting. Let

g1 =
∑

A∈2X\{∅}
mg1(A)η〈A〉, g2 =

∑

A∈2X\{∅}
mg2(A)η〈A〉.

Each of two information sources has its own reliability (discount rate)
α, β ∈ [0, 1] correspondingly in the sense of discounting method (2). We
obtain two new belief functions taking into account discount rates:

g
(α)
1 =

∑

A∈2X\{∅}
m

(α)
g1 (A)η〈A〉, g

(β)
2 =

∑

B∈2X\{∅}
m

(β)
g2 (B)η〈B〉,

where m
(α)
g1 (A) = (1− α)mg1(A), A 6= X, m

(α)
g1 (X) = α+ (1− α)mg1(X)

and m
(β)
g2 calculated similarly. We note that

g
(α)
1 =

∑

A∈2X\{∅}
mg1(A)η

(α)
〈A〉, g

(β)
2 =

∑

B∈2X\{∅}
mg2(B)η

(β)
〈B〉, (3)

where η
(α)
〈A〉 = (1 − α)η〈A〉 + αη〈X〉 and η

(β)
〈B〉 calculated similarly. We

assume that evidences F (g1) and F (g2) are non-conflicting, i.e. K =

K(g1, g2) = 0. Then K
(

g
(α)
1 , g

(β)
2

)

= 0. If we apply Dempster’s rule ϕD

to the pair g
(α)
1 , g

(β)
2 of belief functions then we get a new belief func-

tion gα,β = ϕD(g
(α)
1 , g

(β)
2 ). Dempster’s rule ϕD(g

(α)
1 , g

(β)
2 ) is a linear rule

for every argument for non-conflicting evidences. Therefore we get from
representations (3)

ϕD(g
(α)
1 , g

(β)
2 ) =

∑

A∈A(g1)

∑

B∈A(g2)

mg1(A)mg2(B)ϕD

(

η
(α)
〈A〉, η

(β)
〈B〉

)

. (4)

We have A ∩ B 6= ∅ for every pair A ∈ A(g1), B ∈ A(g2) in case of
non-conflicting evidences. Consequently we get

ϕD

(

η
(α)

〈A〉, η
(β)

〈B〉

)

= (1−α)(1−β)η〈A∩B〉+(1−α)βη〈A〉+α(1−β)η〈B〉+αβη〈X〉.

Consequently we have from (4),

gα,β = ϕD(g
(α)
1 , g

(β)
2 ) =

∑

A∈A(g1)

∑

B∈A(g2)

mg1(A)mg2(B)ϕD

(

η
(α)
〈A〉, η

(β)
〈B〉

)

=

(1−α)(1−β)
∑

A∈A(g1)

∑

B∈A(g2)

mg1(A)mg2(B)η〈A∩B〉+(1−α)β
∑

A∈A(g1)

mg1(A)η〈A〉+

5



(1− β)α
∑

B∈A(g2)

mg2(B)η〈B〉 + αβη〈X〉.

Therefore, a new belief function gα,β has the following expression through
initial functions g1, g2 ∈ Bel(X) and the belief function g = ϕD(g1, g2)
obtained without discounting

gα,β = ϕD(g
(α)
1 , g

(β)
2 ) = (1− α)(1− β)g + (1− α)βg1+

+ (1− β)αg2 + αβη〈X〉. (5)

We have a question about changing of the amount of ignorance after
applying Dempster’s rule with discounting. We will estimate the quantity
of ignorance with the help of linear imprecision index f . Dempster’s rule is
an optimistic rule (i.e. f(g) ≤ min

i
f(gi),) for non-conflicting and reliable

information sources (α, β = 0) with respect to any linear imprecision index
as it follows from Proposition 4.2.

If we use non-reliable information sources (α, β 6= 0) then imprecision
index f(gα,β) of new belief function gα,β could be greater than imprecision
indices of initial functions f(gi), i = 1, 2. We will find the conditions on
discounting rates for which the amount of ignorance will not increase
after applying Dempster’s rule with discounting. We obtain from (5) with
account of linearity of index f and normalization condition f(η〈X〉) = 1
that

f(gα,β) = (1− α)(1− β)f(g) + (1− α)βf(g1) + (1− β)αf(g2) + αβ. (6)

The function f(gα,β) can be rewritten in the form

f(gα,β) = f(g) + α∆2 + β∆1 + αβ(∆−∆1 −∆2), (7)

where ∆i = f(gi) − f(g), i = 1, 2 is a changing of ignorance of i-th in-
formation source after applying Dempster’s rule (without of discounting),
∆ = 1− f(g). Note that we have ∆i ≥ 0, i = 1, 2 in any non-conflicting
case and we have ∆ ≥ ∆i, i = 1, 2 in any case. Then the condition
f(gα,β) ≤ f(gi), i = 1, 2 is equivalent to inequality

α∆2 + β∆1 + αβ(∆−∆1 −∆2) ≤ min{∆1,∆2}. (8)

Let Ign0 = Ign0(g1, g2) be a set of all pair (α, β) ∈ [0, 1]2 which satisfy
inequality (8) for given belief functions g1, g2 ∈ Bel(X). Note that the set
Ign0(g1, g2) is a star domain (or star-convex set, star-shaped or radially
convex set) [4] with star center in the origin, i.e. if (α0, β0) ∈ Ign0(g1, g2),
then (tα0, tβ0) ∈ Ign0(g1, g2) for all t ∈ [0, 1].

Indeed, let (α0, β0) ∈ Ign0(g1, g2). We will show that the point
(tα0, tβ0) ∈ Ign0(g1, g2) for all t ∈ [0, 1]. We denote the function of
the left side of the inequality (8) in point (tα0, tβ0)through ψ(t). Then it
is sufficient to show that the function ψ(t) does not decrease on segment
[0, 1]. We have

ψ
′(t) = α0∆2 + β0∆1 + 2tα0β0(∆−∆1 −∆2).

If ∆ −∆1 −∆2 ≥ 0, then ψ′(t) ≥ α0∆2 + β0∆1 ≥ 0 for all t ∈ [0, 1].
If ∆−∆1 −∆2 < 0, then we have for t ∈ [0, 1]

ψ
′(t) ≥ α0∆2 + β0∆1 − 2α0β0(∆1 +∆2 −∆) ≥
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Figure 1: The general view of the set Ign0 = Ign0(g1, g2) under combining
non-conflict evidences (the case ∆1 < ∆2 is shown).

2
√

α0β0∆1∆2 − 2α0β0(∆1 +∆2 −∆) ≥

2
√

α0β0

(√
∆1∆2 +∆−∆1 −∆2

)

≥ 0,

because, for example, the inequality is true in the case ∆1 ≥ ∆2

√
∆1∆2+

∆ − ∆1 − ∆2 =
√
∆2

(√
∆1 −

√
∆2

)

+ (∆−∆1) ≥ 0 due to ∆ ≥ ∆i,
i = 1, 2.

The general view of the set Ign0(g1, g2) is shown in Figure 1.
We have the following result in the general case of conflicting evidence

(i.e. K = K(g1, g2) 6= 0) . We consider further the case of conflicting
evidence (i.e. K = K(g1, g2) 6= 0). In this case we obtain the following
value of conflict after discounting

Kα,β = K
(

g
(α)
1 , g

(β)
2

)

= (1− α)(1− β)
∑

A∩B=∅

mg1(A)mg2(B)=

= (1− α)(1− β)K. (9)

Then

f(gα,β)=
(1− α)(1− β)(1−K)f(g) + (1− α)βf(g1) + (1− β)αf(g2) + αβ

1− (1− α)(1− β)K
=

= f(g) +
α∆2 + β∆1 + αβ(∆−∆1 −∆2)

1− (1− α)(1− β)K
.

The same equality can be obtained directly from (6) (but not strictly)
taking into account a linearity of the functional f . Thus, the following
statement is true.

Proposition 4.3. Dempster’s rule with discounting (α, β) ∈ [0, 1]2 is
optimistic rule with respect to linear imprecision index f (i.e. f(gα,β) ≤
min

i
f(gi)) iff

α∆2+β∆1+αβ(∆−∆1−∆2) ≤ (1−(1−α)(1−β)K) min{∆1,∆2}. (10)
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Figure 2: A graph of statistical estimates of the probability P =
P̃ {min{∆1,∆2} ≥ 0|K} from conflict K.

Let IgnK = IgnK(g1, g2) be a set of all pair (α, β) ∈ [0, 1]2, which
satisfy inequality (10) for given belief functions g1, g2 ∈ Bel(X), which
have conflict K = K(g1, g2). It is easy to see from (10) that IgnK′ ⊆
IgnK′′ ⊆ Ign0, if K′ ≥ K′′ under condition ∆i = f(gi) − f(g) ≥ 0,
i = 1, 2.

One can show that the set IgnK = IgnK(g1, g2) is a star domain with
star center in the origin in case ∆i ≥ 0, i = 1, 2, iff ∆−∆1 −∆2 ≥ 0.

Remark 1. The statistical analysis shows that probability P {min{∆1,∆2} ≥ 0|K}
is decreased with growth of K but it will be greater than 0,5 in case of uni-
form independent distribution of evidence (mass function and focal sets).
A graph of statistical estimates of the probability P = P̃ {min{∆1,∆2} ≥ 0|K}
from conflict K in the case |X| = 7, |A(g1)| = |A(g2)| = 2, is shown on
Figure 2 for uniform independent generation of focal sets and mass func-
tion.

Moreover we have that min{∆1,∆2} > 0 approximately in 95% of
cases, but max{∆1,∆2} < 0 approximately in 0,1% of cases under the
same conditions of statistical tests.

The value of conflict is changed if the evidence are discounted in ac-
cording to the formula (9). The value of conflict after discounting is equal

Kα,β = K
(

g
(α)
1 , g

(β)
2

)

= (1 − α)(1 − β)K. If the discount rates are in-

creased then the value of conflict between the evidence is decreased. The
problem of description of all pair (α, β) ∈ [0, 1]2 for given belief functions
g1, g2 ∈ Bel(X) for which the conflict Kα,β is not greater some threshold
value Kmax ≤ K (i.e. Kα,β = (1−α)(1−β)K ≤ Kmax) can be formulated.
We denote this set through ConflK(Kmax).

The problem of description of reliability of information sources (dis-
counting rates) for which the aggregation with the help of Dempster’s rule
will not lead to an increase of ignorance ((α, β) ∈ IgnK) but a conflict
will not be great ((α, β) ∈ ConflK(Kmax)) is an actual problem. This set
is defined as IgnK ∩ ConflK(Kmax).

The example of set IgnK ∩ ConflK(Kmax) is shown on Figure 3.
Now the problem of finding of points-reliabilities (α, β) ∈ IgnK ∩

ConflK(Kmax) for which the imprecision index f(gα,β) after combining

8



Figure 3: The example of set IgnK ∩ ConflK(Kmax)

will be minimal can be formulated:

f(gα,β) → min, (α, β) ∈ IgnK ∩ ConflK(Kmax). (11)

This problem is an actual if we have several pairs of conflicting in-
formation sources with different reliabilities. We must choose the best
pair for combining. Note that the formulation of the problem (11) can be
considered as an optimization problem of finding of combining rule from
parametric family of rules {gα,β}α,β∈[0,1], for which the ignorance will be
minimal under the condition that the conflict is not greater some thresh-
old value Kmax. The generalized statement of the problem is considered
in [3].

5 Change of ignorance after combining

with fuzzy discount rates

Assume that reliabilities of information sources α and β are not known
precisely but we have a fuzzy numbers α̃ and β̃. Then the imprecision
index f(gα̃,β̃) will be by a fuzzy number also and, for example, in case of
non-conflicting evidence (see (7)) f(gα̃,β̃) is equal

f(gα̃,β̃) = f(g) + α̃∆2 + β̃∆1 + α̃β̃(∆−∆1 −∆2).

Then we can formulate the problem of finding of the fuzzy numbers α̃
and β̃ for which f(gα̃,β̃)≤If(gi), i = 1, 2, where ≤I is a some relation of
comparison of fuzzy numbers [14].

Example. Let α̃ and β̃ are by triangular fuzzy numbers of the form
α̃ = (α − δ, α, α + δ) and β̃ = (β − ω, β, β + ω) correspondingly. We
will use the method Adamo [1] for comparison of the fuzzy numbers
ũ and ṽ. Let ũγ = {t|µũ(t) ≥ γ} be a γ-cut of fuzzy number ũ with
relationship function µũ and ũγ = [lũ(γ), rũ(γ)]. The fuzzy number ũ
does not exceed the fuzzy number ṽ with respect to the method Adamo
(ũ≤Aṽ), if rũ(γ) ≤ rṽ(γ) for given (fixed) level γ ∈ (0, 1]. The level γ
characterizes a measure of risk of the wrong decision. Then

f(gα̃,β̃)≤If(gi) ⇔ rf(g
α̃,β̃

)(γ) ≤ min
i
f(gi),
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Figure 4: A contour map of function rf(g
α̃,β̃

)(γ).

where rf(g
α̃,β̃

)(γ) = f(g)+rα̃(γ)∆2+rβ̃(γ)∆1+rα̃(γ)rβ̃(γ)(∆−∆1−∆2),

rα̃(γ) = α+ δ(1− γ), rβ̃(γ) = β + ω(1− γ), γ ∈ (0, 1].
The example of contour map of function rf(g

α̃,β̃
)(γ) for γ = 0.9, δ =

ω = 0.3, f(g) = 0.2, f(g1) = f(g2) = 0.4, is shown on Figure 4.

6 Conclusion

The qualitative characteristics of the combining evidence with the help
of Dempster’s rule with discounting were studied in this paper in the
framework of Dempster-Shafer theory. In particular we found conditions
on the discount rates for which the amount of ignorance after applying
Dempster’s rule is not increased, i.e. this rule will be still optimistic in
spite of unreliable information sources. This problem was solved in general
case of conflicting evidences and crisp discounting rates as well as in the
case of non-conflicting evidences and fuzzy discounting rates. In addition,
the problem of finding such discount rates for which a conflict of evidence
will not be greater than a certain threshold and the quality of ignorance
after the combination will not increase was formulated and solved.
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