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Abstract. Some general schemes and examples of aggregation of two
belief functions into a single belief function are considered in this paper.
We find some sufficient conditions of change of ignorance when evidences
are combined with the help of various rules. It is shown that combining
rules can be regarded as pessimistic or optimistic depending on the sign
of the change of ignorance after applying.
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1 Introduction

The study of combining rules of evidence is one of the central directions of
research in the belief function theory. The combining rule can be considered as
an operator which aggregates the information obtained from different sources.
The review of some popular combining rules can be found in [14].

This paper has two purposes. The first purpose is research of general schemes
of combining of evidences. We can consider the combining rule as a special type
of aggregation function [9] ϕ : Bel2(X) → Bel(X), where Bel(X) be a set
of all belief functions on finite set X . The different axioms of aggregation of
information obtained from different sources are considered (see, for example,
[16], [4], [11], [10]). Some general schemes and examples of aggregation of two
belief functions into a single belief function are given in Section 4.

The second purpose is research of quality characteristics of combining. These
characteristics can be divided into a priori characteristics that estimate the qual-
ity of information sources and a posteriori characteristics which estimate the re-
sult of combining. The following characteristics are relevant to the first group: a)
the reliability of sources in discount rule [15]; b) the conflict measure of evidence
[12] in Dempster’s rule, Yage’s rule [17] etc.; c) the degree of independence of
evidence. The amount of change of ignorance after the use of combining rule is
the most important a posteriori characteristic. The amount of ignorance that
contained in evidence can be estimated with the help of imprecision indices [3].
The generalized Hartley measure is an example of such index [6]. Some sufficient
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conditions of change of ignorance when evidences are combined with the help of
various rules are described in Section 5.

We have to take into account not only aggregated evidences but also who
combines this evidence. For example, let we have information from two sources
about prognosticated share price. Let the first source predicted that share price
will be in an interval A1 and the second source predicted share price in an
interval A2. If a pessimist aggregates the information from two sources then he
will predict the share price in the set A1 ∪A2. But if an optimist aggregates the
information then he will predict the share price in the set A1∩A2. In other words,
decision maker applies the different combining rules in depending on the price
of a wrong decision, an own caution and other factors. It is known that some
combining rules (for example, Dubois and Prade’s disjunctive consensus rule
[8]) have a pessimistic character in the sense that amount of ignorance does not
decrease after their applying. The other rules are optimistic because the amount
of ignorance is decreased after their applying. The majority of rules have the
mixed type because their character depends on a posteriori characteristics of
information sources. In Section 6 it is shown that level of optimism or pessimism
in combining rule can be estimated numerically with the help of imprecision
indices.

2 Basic Definitions and Notation

The notion of belief function is the main notion of Dempster-Shafer theory (ev-
idence theory). Let X be a finite universal set, 2X is a set of all subsets of X .
We will consider the belief function (or belief measure) [15] g : 2X → [0, 1].
The value g(A), A ∈ 2X , is interpreted as a degree of confidence that the true
alternative of X belongs to set A. A belief function g is defined with the help
of set function mg(A) called the basic probability assignment (bpa). This func-
tion should satisfy the following conditions [15]: mg : 2X → [0, 1], mg(∅) = 0,
∑

A⊆X mg(A) = 1. Then

g(A) =
∑

B: B⊆A

mg(B).

Let the set of all belief measures on 2X be denoted by Bel(X) and the set of all
set functions on 2X be denoted by M(X).

The belief function g ∈ Bel(X) can be represented with the help of so called

categorical belief functions η〈B〉(A) =

{

1, B ⊆ A,

0, B 6⊆ A,
A ⊆ X B 6= ∅. Then g =

∑

B∈2X\{∅} mg(B)η〈B〉. The subset A ∈ 2X is called a focal element if mg(A) >

0. Let A(g) be the set of all focal elements related to the belief function g. The
pair F (g) = (A(g),mg) is called a body of evidence. Let F(X) be the set of all
bodies of evidence on X .
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3 Combining Rules

We consider below only a few basic combining rules.
a) Dempster’s rule. This rule was introduced in [5] and generalized in [15]

for combining arbitrary independent evidence. This rule is defined as

mD(A) =
1

1−K

∑

A1∩A2=A

mg1(A1)mg2(A2), A 6= ∅, mD(∅) = 0, (1)

K = K(g1, g2) =
∑

A1∩A2=∅

mg1(A1)mg2(A2). (2)

The value K(g1, g2) characterizes the amount of conflict in two information
sources which defined with the help of bodies of evidence F (g1) and F (g2). If
K(g1, g2) = 1 then it means that information sources are absolutely conflicting
and Dempster’s rule cannot be applied.

The discount of bpa was introduced by Shafer [15] for accounting of reliability
of information:

mα(A) = (1 − α)m(A), A 6= X, mα(X) = α+ (1 − α)m(X). (3)

The coefficient α ∈ [0, 1] characterizes the degree of reliability of information. If
α = 0 then it means that information source is absolutely reliable. If α = 1 then
it means that information source is absolutely non-reliable. The Dempster’s rule
(2) applies after discounting of bpa of two evidences. This modification often
called the discount rule.

b) Yager’s modified Dempster’s rule. This rule was introduced in [17] and it
is defined as

q(A) =
∑

A1∩A2=A

mg1(A1)mg2(A2), A ∈ 2X , (4)

mY (A) = q(A), A 6= ∅, X, mY (∅) = 0, mY (X) = q(∅) + q(X). (5)

c) Zhang’s center combination rule. This rule was introduced in [18] and it
is defined as

mZ(A) =
∑

A1∩A2=A

r(A1, A2)mg1(A1)mg2(A2), A ∈ 2X ,

where r(A1, A2) is a measure of intersection of sets A1 and A2.
d) Dubois and Prade’s disjunctive consensus rule [8]:

mDP (A) =
∑

A1∪A2=A

mg1(A1)mg2 (A2), A ∈ 2X . (6)

Any combining rule of two bodies of evidence induces aggregation of two
belief functions which correspond to these bodies.
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4 Combining Rule both the Aggregation of Evidence

We will consider an operator ϕ : Bel2(X) → Bel(X) that is called the aggrega-
tion of two belief functions g1, g2 ∈ Bel(X) in one belief function g = ϕ(g1, g2) ∈
Bel(X). The vector of bpa (mg(B))B⊆X corresponds bijective (with the help of
Möbius transform) to belief function g ∈ Bel(X) if we define some ordering of
all subsets of the universal set X : g ↔ mg = (mg(B))B⊆X . Therefore there is
an aggregation of bpa mg = Φ(mg1 ,mg2) for any aggregation of belief functions
g = ϕ(g1, g2) and vice versa. We consider some special cases of aggregation of
belief functions.

1. Pointwise Aggregation of Belief Functions. The new value of belief
function g(A) = ϕ(g1(A), g2(A)) is associated with every pair (g1(A), g2(A)) of
belief functions on the same set A ∈ 2X . In this case the aggregation operator ϕ
is a function ϕ : [0, 1]

2 → [0, 1] which must satisfy the special conditions for pre-
serving total monotonicity of resulting set function. These conditions can be for-
mulated in terms of finite differences, defined with the help of the following con-
structions: if∆x1, ..., ∆xs ∈ [0, 1]2 (x+∆x1+...+∆xk ∈ [0, 1]

2
for all k = 1, ..., s)

then ∆sϕ(x;∆x1, ..., ∆xs) =
s
∑

k=0

(−1)s−k ∑

1≤i1<...<ik≤s

ϕ (x+∆xi1 + ...+∆xik )

(if k = 0 then appropriate summand is equal (−1)sϕ(x)).

Theorem 1. [1], [2]. The function ϕ : [0, 1]
2 → [0, 1] defines the aggregation

operator of belief functions by the rule g(A) = ϕ(g1(A), g2(A)), A ∈ 2X , g1, g2 ∈
Bel(X) iff it satisfies the conditions:

1. ϕ(0) = 0, ϕ(1) = 1;

2. ∆kϕ(x;∆x1, ..., ∆xk) ≥ 0, k = 1, 2, ... for all x, ∆x1, ..., ∆xk ∈ [0; 1]
2
, x +

∆x1 + ...+∆xk ∈ [0, 1]
2
.

2. Pointwise Aggregation of BPA. The new bpamg(A) = Φ(mg1 (A),mg2(A))
is associated with every pair (mg1(A),mg2(A)) of bpa for all A ∈ 2X . Note that
this aggregation was considered in [13] in the case of probability measures and
it was called Strong Stepwise Function Property.

Theorem 2. The continuous function Φ : [0, 1]
2 → [0, 1] defines the aggregation

operator of bpa by the rule mg(A) = Φ(mg1 (A),mg2(A)), A ∈ 2X, g1, g2 ∈
Bel(X) iff it satisfies the condition Φ(s, t) = λs+ (1 − λ)t, λ ∈ [0, 1].

Proof. We prove this result for X = {x1, x2} without loss of generality. Let

S = {x = (xi) :
∑

i xi = 1, xi ∈ [0, 1] ∀i}. Then function Φ : [0, 1]
2 → [0, 1]

defines the above operator of aggregation satisfying the condition: if x = (xi),
y = (yi) ∈ S and Φ(xi, yi) = zi, then z = (zi) ∈ S. We have for x = (α, r −
α, 1− r), y = (p, p, 1− 2p) ∈ S

Φ(α, p) + Φ(r − α, p) + Φ(1− r, 1− 2p) = 1, (7)

where α, r, r − α ∈ [0, 1], p ∈ [0, 12 ]. On the other side the following equality

Φ(r, p) + Φ(1− r, 1− p) = 1 (8)
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is true for x = (r, p, 0), y = (1− r, 1− p, 0) ∈ S. Then we have from (7) and (8)

Φ(α, p) + Φ(r − α, p) = Φ(r, p) + Φ(1− r, 1− p)− Φ(1− r, 1− 2p).

If we take p = 0 in last equality then the following equation is true Φ(α, 0) +
Φ(r−α, 0) = Φ(r, 0). If r−α = β then last equality can be rewritten as Φ(α, 0)+
Φ(β, 0) = Φ(α + β, 0). In other words, the function Φ(s, 0) satisfies Cauchy’s
functional equation on [0, 1]. It is known that if a continious function satisfies
Cauchy’s functional equation then it is an additive function: Φ(s, 0) = k1s, s ∈
[0, 1] and k1 ∈ [0, 1] because Φ(s, 0) ∈ [0, 1] for all s ∈ [0, 1]. By analogy Φ(0, t) =
k2t, t ∈ [0, 1], k2 ∈ [0, 1]. Now we get from (7) for r = 1, p = 0

Φ(1, 0) + Φ(0, 1) = k1 + k2 = 1. (9)

If x = (1 − α, 0, α), y = (0, 1 − β, β) ∈ S, α, β ∈ [0, 1] then we have Φ(1 −
α, 0) +Φ(0, 1− β) +Φ(α, β) = 1. Thus Φ(α, β) = 1−Φ(1−α, 0)−Φ(0, 1− β) =
1− k1(1 − α)− k2(1 − β) = k1α+ k2β, with account of (9).

This result is a generalization of the corresponding result for probability
measures [13].

3. Bilinear Aggregation of Belief Functions. In this case the aggregation
function ϕ should be linear for each argument so

ϕ(αg1 + (1− α)g2, g3) = αϕ(g1, g3) + (1− α)ϕ(g2, g3), α ∈ [0, 1]. (10)

Since we have gi =
∑

B∈2X\{∅} mgi(B)η〈B〉 ∈ Bel(X), i = 1, 2, then every

bilinear function on Bel2(X) has the form

ϕ(g1, g2) =
∑

A,B∈2X\{∅}

mg1(A)mg2 (B)γA,B, (11)

where γA,B = ϕ
(

η〈A〉, η〈B〉

)

is some set function on 2X .
We consider the non-empty set B(X) ⊆ Bel2(X) which satisfies the condi-

tion: if (g1, g2) ∈ B(X) then
(

η〈A〉, η〈B〉

)

∈ B(X) for all A ∈ A(g1), B ∈ A(g2).

Theorem 3. The bilinear set function ϕ : B(X) → M(X) of the form (11) de-
termines the belief function iff γA,B = ϕ

(

η〈A〉, η〈B〉

)

∈ Bel(X) for all
(

η〈A〉, η〈B〉

)

∈
B(X).

The Dubois and Prade’s disjunctive consensus rule and Dempster’s rule (Yager’s
rule) for non conflicting evidences are the examples of bilinear aggregation func-
tions of the form (11).

4. Bilinear Normalized Aggregation of Belief Functions. We consider
the aggregation function of belief measures of the form

ϕ0(g1, g2) =
ϕ(g1, g2)

ϕ(g1, g2)(X)
, (12)
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where ϕ(g1, g2) is a bilinear aggregation function which satisfies the condition
(10). We will consider that γA,B(C) ≥ 0 for all A,B,C ∈ 2X\{∅}. It is obvious
that aggregation function ϕ0 cannot be determined on the whole set Bel2(X).
The function ϕ0 will be determined on the set

Bϕ(X)=
{

(g1, g2)∈Bel2(X)| ∃ Ai∈A(gi), i = 1, 2 : ϕ
(

η〈A1〉, η〈A2〉

)

(X) 6=0
}

that follows from (11).

Theorem 4. Let ϕ be a bilinear aggregation function which satisfies the con-
dition (10). The function ϕ0 : Bϕ(X) → M(X) of the form (12) determines
the belief function iff γA,B/γA,B(X) ∈ Bel(X), γA,B = ϕ

(

η〈A〉, η〈B〉

)

for all
(

η〈A〉, η〈B〉

)

∈ Bϕ(X).

The Dempster’s rule and Zhang’s center combination rule are the examples
of bilinear normalized aggregation functions of the form (12):

5 Change of Ignorance when Evidences are Combined

Let we have two sources of information, and this information is described by be-
lief functions g1, g2 ∈ Bel(X) respectively. Let some rule ϕ be used for combin-
ing of these belief functions. We will get the new belief function g = ϕ(g1, g2) ∈
Bel(X). The different information characteristics of aggregation of belief func-
tions were studied in a number of works (see [7]). Below we consider only one
aspect associated with change of information uncertainty. The measure of in-
formation uncertainty associated to the each belief function. Then we have a
question about change of this measure after combining of evidence. There are
some approaches for defining uncertainty measures in evidence theory. We will
follow the approach which was considered in [3]. This approach is based on the
notion of imprecision index.

Let we know only that true alternative belongs to the non-empty set B ⊆ X .
This situation can be described with the help of primitive belief measure η〈B〉(A),
A ⊆ X , which gives the lower probability of an event x ∈ A. The degree of
uncertainty of such measure is described by the well-known Hartley’s measure
H(η〈B〉) = log2 |B|. There is the generalization of Hartley’s measure. Let g

be a belief function that can be represented by g =
∑

B∈2X\{∅} mg(B)η〈B〉 ∈

Bel(X). Then the generalized Hartley’s measure is defined by [6] GH (g) =
∑

B∈2X\{∅} mg(B)log2 |B|.

Definition 1. [3]. A functional f : Bel(X) → [0, 1] is called an imprecision
index if the following conditions are fulfilled:

1. if g is a probability measure then f(g) = 0;
2. f(g1) ≥ f(g2) for all g1, g2 ∈ Bel(X) where g1 ≤ g2 (i.e. g1(A) ≤ g2(A) for

all A ∈ 2X);
3. f

(

η〈X〉

)

= 1.
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We call the imprecision index strict if f(g) = 0 ⇔ g is a probability mea-
sure. The imprecision index f on Bel(X) is called linear (lii) if for any linear

combination
∑k

j=1 αjgj ∈ Bel(X), αj ∈ R, gj ∈ Bel(X), j = 1, ..., k, we have

f
(

∑k
j=1 αjgj

)

=
∑k

j=1 αjf (gj).

Since any linear functional f on Bel(X) is defined uniquely by its values on
a set of primitive measures {η〈B〉}B∈2X\{∅}, then it allows us to define f with

the help of set function µf : 2X → R by the rule µf (B) = f
(

η〈B〉

)

, B ∈ 2X\{∅}.
We set by definition that µf (∅) = 0 for every imprecision index f .

Proposition 1. [3]. A functional f : Bel(X) → [0, 1] is a lii on Bel(X) iff
f(g) =

∑

B∈2X\{∅} mg(B)µf (B), where set function µf satisfies the conditions:

1. µf ({x}) = 0 for all x ∈ X;
2. µf (X) = f

(

η〈X〉

)

= 1;

3.
∑

B:A⊆B (−1)
|B\A|

µf (B) ≤ 0 for all A 6= ∅, X.

Now we are going to give some sufficient conditions for the different rules
under which the amount of ignorance decreases or increases after combining.
The first result is well known [7].

Proposition 2. If g = ϕDP (g1, g2), g1, g2 ∈ Bel(X), where ϕDP is the Dubois
and Prade’s disjunctive consensus rule (6), then inequalities f(g) ≥ f(gi), i =
1, 2 are true for any lii f .

Proposition 3. Let g1, g2 be such belief measures that their conflict measure
K(g1, g2) = 0 and g = ϕα,β(g1, g2), where ϕα,β is a Dempster’s rule (1) af-
ter applied of discount rule (3) to the g1, g2 with coefficients α, β ∈ [0, 1]
correspondingly. If the inequality αβ + (1 − α)βmg1 (X)+ α(1 − β)mg2(X) ≤
(α+ β − αβ)f(gi), is true for lii f then f(g) ≤ f(gi), i = 1, 2.

The last Proposition shows that the amount of ignorance is decreased obvi-
ously after combining of evidence with the help of discount rule if ignorance of
initial evidence were largish.

Proposition 4. Let g1, g2 be such belief measures that their conflict measure
(see formula (2)) K = K(g1, g2) satisfies the condition K +mg1(X)mg2(X) ≤
mgi(X), i = 1, 2, g = ϕY (g1, g2), where ϕY is a Yager’s rule (4)-(5). Then the
inequalities f(g) ≤ f(gi), i = 1, 2 are true for any lii f .

The value mg1(X) characterizes the imprecision of information given by
function g1. Therefore the condition K + mg1(X)mg2(X) ≤ mg1(X) ⇔ K ≤
mg1(X)(1−mg2(X)) in Proposition 4 means that the amount of ignorance can
be decreased with the help of Yager’s rule if the conflict between the evidences
is not very large with respect to amount of ignorance.

Corollary 1. Let g1, g2 be such belief measures that their conflict measure (see
formula (2)) K(g1, g2) = 0, g = ϕ(g1, g2), where ϕ is Dempster’s rule (1). Then
the inequalities f(g) ≤ f(gi), i = 1, 2 are true for any lii f .
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This corollary shows that the imprecision of information is not increased
if we aggregate information from many non-conflict sources with the help of
Dempster’s rule (Yager’s rule). If we have conflicting information sources (K > 0)
then resulting evidence can have a larger imprecision than the imprecision of
sources (see [12]). But we can formulate the following sufficient condition of
decreasing of ignorance for Dempster’s rule and conflicting (K > 0) information
sources.

Let C be the smallest number satisfying the inequality µf (A1 ∩ A2) ≤
Cµf (A1)µf (A2) for all Ai ∈ A(gi), i = 1, 2. Note that min

A:µf (A)>0
µf (A) ≤ 1

C
.

Moreover C ≥ 1 if belief functions g1, g2 are not probability measures and f is
a strict lii.

Proposition 5. Let g1, g2 are such belief measures that their conflict measure
K = K(g1, g2) 6= 1 satisfies the condition K ≤ 1 − Cf(g2) (K ≤ 1 − Cf(g1)),
g = ϕD(g1, g2), where ϕD is a Dempster’s rule (1). Then inequality f(g) ≤ f(g1)
(f(g) ≤ f(g2)) is true for any strict lii f .

6 Pessimistic and Optimistic Combining Rules

Let we have two sources of information, and this information is described by
primitive belief functions η〈A〉 and η〈B〉 respectively, where A,B ∈ 2X\{∅}. The
first source states that true alternative is contained in set A, but second source
states that true alternative is contained in set B.

If we apply the Dubois and Prade’s disjunctive consensus rule for these prim-
itive belief functions then we will get ϕDP (η〈A〉, η〈B〉) = η〈A∪B〉. By other words
we got the statement that a true alternative is contained in set A ∪ B. This
statement can be considered as more pessimistic than an initial statement be-
cause uncertainty does not decreased after combining. For example, if lii of initial
measures was equal to f(η〈A〉) = µf (A) and f(η〈B〉) = µf (B) respectively, then
this index is equal to f(η〈A∪B〉) = µf (A ∪B) ≥ f(η〈A〉) for resulting measure.

If we apply the Dempster’s rule for these primitive belief functions then
we will get ϕD(η〈A〉, η〈B〉) = η〈A∩B〉 for A ∩ B 6= ∅. We got the statement after
combining that a true alternative is contained in set A∩B. This statement can be
considered to be more optimistic than the initial statement because uncertainty
does not increased after combining: f(η〈A∩B〉) = µf (A ∩B) ≤ f(η〈A〉).

If we apply the discount rule for these two primitive belief functions with
parameters α, β ∈ [0, 1] respectively, then we will get new measures after dis-

counting η
(α)
〈A〉 = (1−α)η〈A〉+αη〈X〉, η

(β)
〈B〉 = (1−β)η〈B〉+βη〈X〉. Let A∩B 6= ∅.

Then the conflict K = 0 and we get resultant measure after application of
Dempster’s rule to new discounting measures:

gα,β = ϕD

(

η
(α)
〈A〉, η

(β)
〈B〉

)

=

(1− α)(1 − β)η〈A∩B〉 + (1− α)βη〈A〉 + α(1− β)η〈B〉 + αβη〈X〉. (13)
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We will suppose that the information sources are sufficiently reliable. Then
α, β ≈ 0. In this case we will get the following resulting measure instead of
(13) if we neglect members of second order of α and β

gα,β = ϕD

(

η
(α)
〈A〉, η

(β)
〈B〉

)

= (1− α− β)η〈A∩B〉 + βη〈A〉 + αη〈B〉.

The linear imprecision index of this measure is equal to f(gα,β) = (1 − α −
β)µf (A ∩ B) + βµf (A) + αµf (B). It is easy to see that in this case we can get
different relations between the indices f(gα,β) and f(η〈A〉) = µf (A), f(η〈B〉) =
µf (B) depending on the choice α and β. In particular, we have

{

f(gα,β) ≤ f(η〈A〉),
f(gα,β) ≤ f(η〈B〉)

⇔ α∆(B,A) + β∆(A,B) ≤ min {∆(A,B), ∆(B,A)} ,

where ∆(A,B) = µf (A)− µf (A ∩B).
From last estimations we can make the following conclusion. If the degree

of reliability of information sources is large (i.e. α ≈ 0, β ≈ 0) then discount
rule will act as optimistic rule. Otherwise, when the information sources are non
reliable (α and β are large) then discount rule will be act as pessimistic rule.

7 Conclusion

In this paper we consider some general schemes and examples of aggregation
of two belief functions into one belief function. The well-known combining rules
are obtained from these general schemes in particular cases. Furthermore, an
important a posteriori characteristic of quality of combining like a change of
ignorance after the use of combining rule is considered. This value is estimated
in this paper with the help of linear imprecision indices.

Some sufficient conditions of change of ignorance after applying of different
combining rules are found. In particular we show that amount of ignorance do
not decrease after using of Dubois and Prade’s disjunctive consensus rule. In
contrast the amount of ignorance does not increase after using of Dempster’s
rule for two non-conflict evidences.

In this sense these rules can be considered as a pessimistic rule and optimistic
rule correspondingly. At the same time, the discount rule can be the pessimistic
rule or the optimistic rule depending of values of reliability coefficients of infor-
mation sources. The sufficient conditions on reliability coefficients of this rule to
be pessimistic or optimistic were found.
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